【題目】一個等腰三角形的兩條邊長分別是方程x2﹣7x+10=0的兩根,則該等腰三角形的周長是_____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖6,已知箭頭的方向是水流的方向,一艘游艇從江心島的右側(cè)A點(diǎn)逆流航行3小時到達(dá)B點(diǎn)后,又繼續(xù)順流航行2.5小時后到達(dá)C點(diǎn),總共航行了208千米,已知水流的速度是2千米/時。
(1)求游艇在靜水中的速度。
(2)由于AC段在建橋,游艇用同樣的速度沿原路返回共需多少時間?(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副直角三角板按圖11-14擺放,點(diǎn)C在EF上,AC經(jīng)過點(diǎn)D.已知∠A=∠EDF=90°,AB=AC,∠E=30°,∠BCE=40°.求∠CDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:已知點(diǎn)P(x0,y0)和直線y=kx+b,則點(diǎn)P到直線y=kx+b的距離,可用公式d=計(jì)算.
例如:求點(diǎn)P(﹣1,2)到直線y=3x+7的距離.
解:因?yàn)橹本y=3x+7,其中k=3,b=7.
所以點(diǎn)P(﹣1,2)到直線y=3x+7的距離為:d====.
根據(jù)以上材料,解答下列問題:
(1)求點(diǎn)P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標(biāo)為(0,5),半徑r為2,判斷⊙Q與直線y=x+9的位置關(guān)系并說明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一組數(shù)據(jù)2,3,4,5,x的方差與另一組數(shù)據(jù)5,6,7,8,9的方差相等,則x的值為( 。
A.1
B.6
C.1或6
D.5或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,射線OC在∠AOB的內(nèi)部,圖中共有3個角:∠AOB,∠AOC和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC是∠AOB的“巧分線”.如圖2,若∠MPN=60°,且射線PQ繞點(diǎn)P從PN位置開始,以每秒10°的速度逆時針旋轉(zhuǎn),當(dāng)PQ與PN成180°時停止旋轉(zhuǎn),旋轉(zhuǎn)的時間為t秒.若射線PM同時繞點(diǎn)P以每秒5°的速度逆時針旋轉(zhuǎn),并與PQ同時停止,當(dāng)t=____秒,射線PQ是∠MPN的“巧分線”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件是必然事件的是( 。
A.有兩邊及一角對應(yīng)相等的兩三角形全等
B.若a2=b2 則有a=b
C.方程x2﹣x+1=0有兩個不等實(shí)根
D.圓的切線垂直于過切點(diǎn)的半徑
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”黃金周期間,為了促銷商品,甲、乙兩個商店都采取優(yōu)惠措施,甲店推出八折后再打八折,乙店則一次性六折優(yōu)惠,若同樣價(jià)格的商品,下列結(jié)論正確的是( )
A. 甲比乙優(yōu)惠 B. 乙比甲優(yōu)惠 C. 兩店優(yōu)惠條件相同 D. 不能進(jìn)行比較
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com