【題目】如圖一根木棒放在數(shù)軸上,木棒的左端與數(shù)軸上的點(diǎn)A重合,右端與點(diǎn)B重合.
(1)若將木棒沿?cái)?shù)軸向右水平移動(dòng),則當(dāng)它的左端移動(dòng)到B點(diǎn)時(shí),它的右端在數(shù)軸上所對(duì)應(yīng)的數(shù)為20;若將木棒沿?cái)?shù)軸向左水平移動(dòng),則當(dāng)它的右端移動(dòng)到A點(diǎn)時(shí),則它的左端在數(shù)軸上所對(duì)應(yīng)的數(shù)為5(單位:cm),由此可得到木棒長(zhǎng)為cm.
(2)由題(1)的啟發(fā),請(qǐng)你能借助“數(shù)軸”這個(gè)工具幫助小紅解決下列問(wèn)題:
問(wèn)題:一天,小紅去問(wèn)曾當(dāng)過(guò)數(shù)學(xué)老師現(xiàn)在退休在家的爺爺?shù)哪挲g,爺爺說(shuō):“我若是你現(xiàn)在這么大,你還要40年才出生;你若是我現(xiàn)在這么大,我已經(jīng)125歲,是老壽星了,哈哈!”,請(qǐng)求出爺爺現(xiàn)在多少歲了?
【答案】
(1)5
(2)解:借助數(shù)軸,把小紅與爺爺?shù)哪挲g差看做木棒AB,
類(lèi)似爺爺比小紅大時(shí)看做當(dāng)A點(diǎn)移動(dòng)到B點(diǎn)時(shí),
此時(shí)B點(diǎn)所對(duì)應(yīng)的數(shù)為﹣40,
小紅比爺爺大時(shí)看做當(dāng)B點(diǎn)移動(dòng)到A點(diǎn)時(shí),
此時(shí)A點(diǎn)所對(duì)應(yīng)的數(shù)為125,
∴可知爺爺比小紅大[125﹣(﹣40)]÷3=55,
可知爺爺?shù)哪挲g為125﹣55=70.
答:爺爺?shù)哪挲g是70歲
【解析】解:(1)由數(shù)軸觀(guān)察知三根木棒長(zhǎng)是20﹣5=15(cm),
則此木棒長(zhǎng)為:15÷3=5cm,
所以答案是:5.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用數(shù)軸,掌握數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線(xiàn)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點(diǎn)分別在x軸和y軸上,OA=1,OB=,連接AB,過(guò)AB中點(diǎn)C1分別作x軸和y軸的垂線(xiàn),垂足分別是點(diǎn)A1、B1,連接A1B1,再過(guò)A1B1中點(diǎn)C2作x軸和y軸的垂線(xiàn),照此規(guī)律依次作下去,則點(diǎn)Cn的坐標(biāo)為 ___________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,△ABC與△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且點(diǎn)D在AB邊上,AB、EF的中點(diǎn)均為O,連結(jié)BF、CD、CO,顯然點(diǎn)C、F、O在同一條直線(xiàn)上,可以證明△BOF≌△COD,則BF=CD.
解決問(wèn)題
(1)將圖①中的Rt△DEF繞點(diǎn)O旋轉(zhuǎn)得到圖②,猜想此時(shí)線(xiàn)段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點(diǎn)均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請(qǐng)說(shuō)明理由;如不成立,請(qǐng)求出BF與CD之間的數(shù)量關(guān)系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點(diǎn)均為0,且頂角∠ACB=∠EDF=α,請(qǐng)直接寫(xiě)出的值(用含α的式子表示出來(lái))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,在A,B兩地之間有汽車(chē)站C站,客車(chē)由A地駛往C站,貨車(chē)由B地駛往A地.兩車(chē)同時(shí)出發(fā),勻速行駛.圖2是客車(chē)、貨車(chē)離C站的路程y1,y2(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系圖象.
(1)填空:A,B兩地相距 千米;
(2)求兩小時(shí)后,貨車(chē)離C站的路程y2與行駛時(shí)間x之間的函數(shù)關(guān)系式;
(3)客、貨兩車(chē)何時(shí)相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答題
(1)一個(gè)數(shù)的絕對(duì)值是指在數(shù)軸上表示這個(gè)數(shù)的點(diǎn)到的距離;
(2)若|a|=﹣a,則a0;
(3)有理數(shù)a、b在數(shù)軸上的位置如圖所示,請(qǐng)化簡(jiǎn)|a|+|b|+|a+b|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫(xiě)出∠A和∠C之間的數(shù)量關(guān)系;
(2)如圖2,過(guò)點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;
(3)如圖3,在(2)問(wèn)的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)正比例函數(shù)y=mx的圖象經(jīng)過(guò)點(diǎn)A(m,4),且y的值隨x值的增大而減小,則m=( )
A. 2 B. -2 C. 4 D. -4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com