【題目】如圖,已知ABCD的周長為100,對角線ACBD相交于點O,AODAOB的周長之差為 20,求AD,CD的長.

【答案】AD35,CD=15

【解析】試題分析根據(jù)平行四邊形的性質(zhì)得到CD=ABAD=BC,OA=OC,OB=OD,由已知推出AD-AB=20AD+AB=50,解方程組即可求出答案.

試題解析∵四邊形ABCD是平行四邊形CD=AB,AD=BC,OA=OC,OB=OD∵△AOD與△AOB的周長之差為20,OA+OD+AD-AB+OA+OB=20AD-AB=20①ABCD的周長為100,∴2AD+AB=100,AD+AB=50②,AD=35,AB=15,CD=15

AD=35CD=15

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:請你添加一個條件_____可以得到

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】4月的某天小欣在“A超市買了雀巢巧克力趣多多小餅干10包,已知雀巢巧克力每包22元,趣多多小餅干每包2元,總共花費了80元.

(1)請求出小欣在這次采購中,雀巢巧克力趣多多小餅干各買了多少包?

(2)“期間,小欣發(fā)現(xiàn),A、B兩超市以同樣的價格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案:在A超市累計購物超過50元后,超過50元的部分打九折;在B超市累計購物超過100元后,超過100元的部分打八折.

①請問期間,若小欣購物金額超過100元,去哪家超市購物更劃算?

期間,小欣又到“B超市購買了一些雀巢巧克力,請問她至少購買多少包時,平均每包價格不超過20元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知等腰三角形ABC的底邊BC=20cm,D是腰AB上一點,且CD=16cm,BD=12cm,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(聊城臨清市期末)如圖,四邊形ABCD中,ABCD,對角線AC,BD交于點O,下列條件中不能說明四邊形ABCD是平行四邊形的是(  )

A. ADBC B. ACBD

C. ABCD D. BACDCA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=4,AD=6,M是AD邊的中點,P是射線AB上的一個動點(不與A,B重合),MN⊥PM交射線BC于N點.

(1)如圖1,當(dāng)點N與點C重合時,求AP的長;

(2)如圖2,在點N的運動過程中,求證: 為定值;

(3)在射線AB上,是否存在點P,使得△DCN∽△PMN?若存在,求此時AP的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D、E分別在AC、AB邊上,且BC=BD,AD=DE=EB,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一個四邊形的邊角料,東東通過測量,獲得了如下數(shù)據(jù):AB=3cmBC=12cm,CD=13cm,AD=4cm,東東由此認為這個四邊形中∠A恰好是直角,你認為東東的判斷正確嗎?如果你認為他正確,請說明其中的理由;如果你認為他不正確,那你認為需要什么條件,才可以判斷∠A是直角?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,設(shè)CD的長為x,四邊形ABCD的面積為y,則y與x之間的函數(shù)關(guān)系式是(  )

A. y= B. y= C. y= D. y=

查看答案和解析>>

同步練習(xí)冊答案