【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤ ,其中正確結(jié)論有( )個(gè)
A. 2 B. 3 C. 4 D. 5
【答案】C
【解析】∵四邊形ABCD是正方形,△AEF是等邊三角形,
∴AB=BC=CD=AD,AE=AF=EF,∠B=∠D=∠BCD=90°,∠EAF=60°,
∴△ABE≌△ADF,∠BAE+∠DAF=90°-60°=30°,
∴∠BAE=∠DAF=15°,BE=DF,(即①②正確);
∴BC-BE=DC-DF,即CE=CF,
又∵AE=AF,
∴點(diǎn)A、C都在線段EF的垂直平分線上,
∴AC垂直平分EF.(即③正確);
如下圖,在AB上取點(diǎn)P連接PE,使PE=PA,則由∠BAE=15°可知∠BPE=30°,
設(shè)BE=DF=1,則PE=PA=2,在Rt△PEB中由勾股定理可得:PB=,
∴AB=BC=DC=,
∴CE=CF=BC-BE=,
∴EF=EC=,
∵BE+DF=2,
∴BE+DFEF.(即④錯(cuò)誤);
∵S△CEF=CE2=,2S△ABE=AB·BE=,
∴S△CEF=2S△ABE(即⑤正確);
綜上所述,上述5個(gè)結(jié)論中,正確的有4個(gè).
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知將一塊直角三角板DEF放置在△ABC上,使得該三角板的兩條直角邊DE,DF恰好分別經(jīng)過點(diǎn)B、C.
(1)∠DBC+∠DCB= 度;
(2)過點(diǎn)A作直線直線MN∥DE,若∠ACD=20°,試求∠CAM的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如今很多初中生購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此數(shù)學(xué)興趣小組對本班同學(xué)一天飲用飲品的情況進(jìn)行了調(diào)查,大致可分為四種:
A:自帶白開水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.
根據(jù)統(tǒng)計(jì)結(jié)果繪制如下兩個(gè)統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)這個(gè)班級有多少名同學(xué)?并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)若該班同學(xué)沒人每天只飲用一種飲品(每種僅限1瓶,價(jià)格如下表),則該班同學(xué)用于飲品上的人均花費(fèi)是多少元?
(3)若我市約有初中生4萬人,估計(jì)我市初中生每天用于飲品上的花費(fèi)是多少元?
(4)為了養(yǎng)成良好的生活習(xí)慣,班主任決定在自帶白開水的5名同學(xué)(男生2人,女生3人)中隨機(jī)抽取2名同學(xué)做良好習(xí)慣監(jiān)督員,請用列表法或樹狀圖法求出恰好抽到2名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 下列命題的逆命題為真命題的是( 。
A.對頂角相等B.內(nèi)錯(cuò)角相等,兩直線平行
C.直角都相等D.如果x=3,那么|x|=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在體育課上,對七年級男生進(jìn)行引體向上測試.以做4個(gè)為標(biāo)準(zhǔn),超過的個(gè)數(shù)記作正數(shù),不足的個(gè)數(shù)記作負(fù)數(shù)其中8名男生做引體向上的個(gè)數(shù)記錄如下:
+3 | -1 | 1 | +3 | 1 | 0 | +2 | -1 |
這8名男生平均每人做了多少個(gè)引體向上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC∽△A`B`C`, ,邊上的中線CD=4cm,△ABC的周長為20cm,△A`B`C`的面積是64 cm2,求:
(1)A`B`邊上的中線C`D`的長;
(2)△A`B`C`的周長
(3)△ABC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸分別交于A(﹣1,0),B(5,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)在第二象限內(nèi)取一點(diǎn)C,作CD垂直X軸于點(diǎn)D,鏈接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個(gè)單位,當(dāng)點(diǎn)C落在拋物線上時(shí),求m的值;
(3)在(2)的條件下,當(dāng)點(diǎn)C第一次落在拋物線上記為點(diǎn)E,點(diǎn)P是拋物線對稱軸上一點(diǎn).試探究:在拋物線上是否存在點(diǎn)Q,使以點(diǎn)B、E、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請寫出一個(gè)滿足下列條件的二次三項(xiàng)式_____,該多項(xiàng)式只含有字母x,二次項(xiàng)系數(shù)是1,一次項(xiàng)系數(shù)是﹣2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com