【題目】如圖,B、C是⊙A上的兩點,AB的垂直平分線與⊙A交于E、F兩點,與線段AC交于D點.若∠BFC=20°,則∠DBC=( )

A.30°
B.29°
C.28°
D.20°

【答案】A
【解析】解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC,∴∠ABC=∠ACB=(180°-40°)÷2=70°.又EF是線段AB的垂直平分線,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.所以答案是:A.


【考點精析】本題主要考查了圓周角定理的相關(guān)知識點,需要掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,所對邊分別是,且,若滿足,則稱為奇異三角形,例如等邊三角形就是奇異三角形.

(1)若,判斷是否為奇異三角形,并說明理由;

(2)若,求的長;

(3)如圖2,在奇異三角形中,,點邊上的中點,連結(jié)分割成2個三角形,其中是奇異三角形,是以為底的等腰三角形,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,CDAB于點DCE是∠ACB的平分線,∠A20°,B60°,求∠BCD和∠ECD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將平行四邊形紙片沿對角線翻折,使點落在平行四邊形所在平面內(nèi),相交于點,連接

判斷的位置關(guān)系,并證明.

在圖1中,若,是否存在恰好為直角三角形的情形?若存在,求出的長度:若不存在,請說明理由.

若將圖中平行四邊形紙片換成矩形紙片,沿對角線折疊發(fā)現(xiàn)所得圖形是軸對稱圖形;將所得圖形沿其對稱軸再次折疊后,得到的仍是軸對稱圖形.則矩形紙片的長寬之比是多少?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明:

已知:如圖,AB∥DE,求證:∠D+∠BCD﹣∠B=180°,

證明:過點CCF∥AB.

∵AB∥CF(已知),

∴∠B=      ).

∵AB∥DE,CF∥AB( 已知 ),

∴CF∥DE (   

∴∠2+   =180° (   

∵∠2=∠BCD﹣∠1,

∴∠D+∠BCD﹣∠B=180° (   ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,弦CD⊥AB,∠BCD=30°,CD=4 ,則S陰影=(
A.2π??
B. π??
C. π??
D. π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題是真命題的是(  )

A.一組對邊平行且有一組對角相等的四邊形是平行四邊形

B.對角線相等的四邊形是矩形

C.一組對邊平行且另一組對邊相等的四邊形是平行四邊形

D.對角線互相垂直且相等的四邊形是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)九年級期中測驗中解答的幾道填空題:(1)若x2=a,則x= a ;(2)方程x(x-1)=x-1的根是 x=0 ;(3)若直角三角形的兩邊長為x2-3x+2=0的兩個根,則該三角形的面積為 1 ;(4)若關(guān)于x的一元二次方程3x2+k=0有實數(shù)根,則 k≤0 .其中答案完全正確的個數(shù)是( )
A.0個
B.1個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀與運用觀察發(fā)現(xiàn):解方程組 ,將(1)整體代入(2),得2×4+y10,解得y2,把y2代入(1),得x6,所以 ;這種解法稱為“整體代入法”,你若留心觀察,有很多方程組可采用此方法解答.已知關(guān)于ab的方程組:

1)求a+b的值;

2)若關(guān)于x的不等式組恰好有1個整數(shù)解,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案