分析 (1)欲證明GF∥AC,只要證明∠A=∠FGB即可解決問題.
(2)①先證明A、D、M、C四點共圓,得到∠CMF=∠CAD=45°,即可解決問題.
②利用①的結論可知,點M在以AC為直徑的⊙O上,運動路徑是弧CD,利用弧長公式即可解決問題.
解答 解:(1)如圖1中,∵CA=CB,∠ACB=90°,
∴∠A=∠ABC=45°,
∵△CEF是由△CAD旋轉逆時針α得到,α=90°,
∴CB與CE重合,
∴∠CBE=∠A=45°,
∴∠ABF=∠ABC+∠CBF=90°,
∵BG=AD=BF,
∴∠BGF=∠BFG=45°,
∴∠A=∠BGF=45°,
∴GF∥AC.
(2)①如圖2中,∵CA=CE,CD=CF,
∴∠CAE=∠CEA,∠CDF=∠CFD,
∵∠ACD=∠ECF,
∴∠ACE=∠DCF,
∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,
∴∠CAE=∠CDF,
∴A、D、M、C四點共圓,
∴∠CMF=∠CAD=45°,
∴∠CMD=180°-∠CMF=135°.
(補充:不用四點共圓的方法:由△OAC∽△ODM,推出△AOD∽△COM,推出∠OCM=∠OAD,即可證明∠CMF=∠CDM+∠DCM=∠CAO+∠OAD=∠CAD=45°)
②如圖3中,O是AC中點,連接OD、CM.
∵AD=DB,CA=CB,
∴CD⊥AB,
∴∠ADC=90°,
由①可知A、D、M、C四點共圓,
∴當α從90°變化到180°時,
點M在以AC為直徑的⊙O上,運動路徑是弧CD,
∵OA=OC,CD=DA,
∴DO⊥AC,
∴∠DOC=90°,
∴$\widehat{CD}$的長=$\frac{90π•1}{180}$=$\frac{π}{2}$.
∴當α從90°變化到180°時,點M運動的路徑長為$\frac{π}{2}$.
點評 本題考查幾何變換綜合題、等腰直角三角形的性質、平行線的判定和性質、弧長公式、四點共圓等知識,解題的關鍵是發(fā)現(xiàn)A、D、M、C四點共圓,最后一個問題的關鍵,正確探究出點M的運動路徑,記住弧長公式,屬于中考壓軸題.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 0.845×104 | B. | 8.45×103 | C. | 8.45×104 | D. | 84.5×102 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 8 | B. | 6 | C. | 4 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com