如圖,AB為一直線,OD是∠AOC的平分線,OE在∠BOC內(nèi),且∠BOE=
1
2
∠EOC,∠BOE=36°,求∠DOE的度數(shù).
考點(diǎn):角的計(jì)算,角平分線的定義
專題:計(jì)算題
分析:根據(jù)∠BOE=
1
2
∠EOC,∠BOE=36°,先求出∠EOC=72°,再求得∠AOC,根據(jù)OD是∠AOC的平分線,得出∠DOC,從而求出∠DOE的度數(shù).
解答:解:∵∠BOE=
1
2
∠EOC,∠BOE=36°,
∴∠EOC=72°,
∴∠AOC=180°-72°-36°=72°,
∵OD是∠AOC的平分線,
∴∠DOC=
1
2
∠AOC=36°,
∴∠DOE=∠DOC+∠COE=36°+72°=108°.
點(diǎn)評(píng):本題考查了角的計(jì)算和角平分線的定義,要熟悉角平分線的表示方法以及角度數(shù)的求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,DF∥BC,BF、DE分別平分∠ABC、∠ADF.DE與BF平行嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商店經(jīng)營兩種業(yè)務(wù),經(jīng)營第一種業(yè)務(wù)獲利y1(萬元)與投資額x(萬元)關(guān)系如圖(1),經(jīng)營第二種業(yè)務(wù)獲利y2(萬元)與投資額x(萬元)關(guān)系如圖(2),
(1)求出y1,y2關(guān)于x的關(guān)系式.
(2)若這位商家共投資10萬元經(jīng)營這兩種業(yè)務(wù),如你安排投資,使兩種業(yè)務(wù)的總獲利最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:(
1
2
)
-2
-6sin30°+(-2)0+|2-
8
|-12014

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若方程組
x+2y=7+k
5x-y=k
的解x與y是互為相反數(shù),求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知am=2,an=3,求:
①am+n的值; 
②a3m-2n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程組:
3x+2y
4
=
2x+y
5
3x+2y
2
=
x-y+1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:-32×(-
2
3
6×(1-
2
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

從mathematics這個(gè)單詞中任意抽取一個(gè)字母,抽到“a”的概率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案