【題目】先化簡(jiǎn),再求值,

12x2y[3xy2+2xy2+2x2y],其中x=,y=2

2)已知a+b=4ab=﹣2,求代數(shù)式(4a﹣3b﹣2aba﹣6b﹣ab)的值.

【答案】(1)﹣9;(214.

【解析】試題分析:(1)去括號(hào)后合并同類(lèi)項(xiàng),最后代入求出即可;
(2)去括號(hào)后合并同類(lèi)項(xiàng),最后代入求出即可.

試題解析:

(1)2x2y-[3xy2+2(xy2+2x2y)]
=2x2y-3xy2-2xy2-4x2y
=-2x2y-5xy2

x=,y=2代入原式為-2×(2×(-2)-5××(-2)
=-9.

(2)∵a+b=4,ab=-2,
∴(4a-3b-2ab)-(a-6b-ab)
=4a-3b-2ab-a+6b+ab
=3a+3b-ab
=3(a+b)-ab,

a+b=4,ab=2代入原式
為3×4-(-2)
=14.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(﹣2,0),拋物線(xiàn)的對(duì)稱(chēng)軸x=1與拋物線(xiàn)交于點(diǎn)D,與直線(xiàn)BC交于點(diǎn)E.
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)F是直線(xiàn)BC上方的拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)F使四邊形ABFC的面積為17,若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)平行于DE的一條動(dòng)直線(xiàn)l與直線(xiàn)BC相交于點(diǎn)P,與拋物線(xiàn)相交于點(diǎn)Q,若以D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y= 的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù)y= 的圖象上,且OA⊥OB,cosA= ,則k的值為( )

A.﹣3
B.﹣4
C.﹣
D.﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在Rt△ABC中,AB=BC;在Rt△ADE中,AD=DE;連結(jié)EC,取EC的中點(diǎn)M,連結(jié)DMBM

1)若點(diǎn)D在邊AC上,點(diǎn)E在邊AB上且與點(diǎn)B不重合,如圖①,

求證:BM=DMBM⊥DM

2)如果將圖①中的△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)小于45°的角,如圖②,那么(1)中的結(jié)論是否仍成立?如果不成立,請(qǐng)舉出反例;如果成立,請(qǐng)給予證明.

圖① 圖②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】出租車(chē)司機(jī)張師傅某天上午營(yíng)運(yùn)全是在東西向的長(zhǎng)江路上進(jìn)行的,如果向東為正,向西為負(fù),這天上午他行車(chē)?yán)锍蹋▎挝唬?/span>km)如下:

.

.最后一名乘客送到目的地,出租車(chē)在東面還是西面?在多少千米處?

.請(qǐng)你幫張師傅算一下,這天上午他一共行駛了多少里程?

.若每千米耗油0.1L,則這天上午張師傅一共用了多少升油?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校食堂廚房的桌子上整齊地?cái)[放著若干相同規(guī)格的碟子,碟子的個(gè)數(shù)與碟子的高度的關(guān)系如下表:

碟子的個(gè)數(shù)

碟子的高度(單位:cm

1

2

2

2+1.5

3

2+3

4

2+4.5

1)當(dāng)桌子上放有x(個(gè))碟子時(shí),請(qǐng)寫(xiě)出此時(shí)碟子的高度(用含x的式子表示);

2)分別從三個(gè)方向上看,其三視圖如上圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,四邊形ABCD中,ADBC,AD=CD,E是對(duì)角線(xiàn)BD上一點(diǎn),且EA=EC.

(1)求證:四邊形ABCD是菱形;

(2)如果BE=BC,且CBE:BCE=2:3,求證:四邊形ABCD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點(diǎn)分別為D、E、F,∠A=80°,點(diǎn)P為⊙O上任意一點(diǎn)(不與E、F重合),則∠EPF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】摩拜單車(chē)公司調(diào)查無(wú)錫市民對(duì)其產(chǎn)品的了解情況,隨機(jī)抽取部分市民進(jìn)行問(wèn)卷,結(jié)果分非常了解比較了解、一般了解、不了解四種類(lèi)型,分別記為、、.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.

1)本次問(wèn)卷共隨機(jī)調(diào)查了 名市民,扇形統(tǒng)計(jì)圖中 .

2)請(qǐng)根據(jù)數(shù)據(jù)信息補(bǔ)全條形統(tǒng)計(jì)圖.

3扇形統(tǒng)計(jì)圖中“D類(lèi)型所對(duì)應(yīng)的圓心角的度數(shù)是 .

4從這次接受調(diào)查的市民中隨機(jī)抽查一個(gè),恰好是不了解的概率是

查看答案和解析>>

同步練習(xí)冊(cè)答案