如圖,已知直線y=x-2與雙曲線(x>0)交于點(diǎn)A(3,m),與x軸交于點(diǎn)B.

1.求反比例函數(shù)的解析式;

2.連結(jié)OA,求△AOB的面積.

       

 

【答案】

 

1.點(diǎn)A(3,m)在直線

 ∴點(diǎn)A的坐標(biāo)是(3,1)

點(diǎn)A(3,1)在雙曲線

     ∴

 ∴

2.軸交于點(diǎn)B的坐標(biāo)為(2,0),而點(diǎn)

【解析】

1.首先根據(jù)直線y=x-2與雙曲線(x>0)交于點(diǎn)A(3,m),把點(diǎn)A代入直線方程求出m的值,然后再把點(diǎn)A坐標(biāo)代入雙曲線中求出k的值;

2.求出直線y=x-2與x軸的坐標(biāo),然后根據(jù)三角形的面積公式求出△AOB的面積.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,已知直線AB和CD相交于點(diǎn)O,∠COE是直角,OF平分∠AOE.
(1)寫(xiě)出∠AOC與∠BOD的大小關(guān)系:
相等
,判斷的依據(jù)是
等角的補(bǔ)角相等

(2)若∠COF=35°,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖,已知直線l1∥l2,AB⊥CD,∠1=30°,則∠2的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知直線l1y=
2
3
x+
8
3
與直線 l2:y=-2x+16相交于點(diǎn)C,直線l1、l2分別交x軸于A、B兩點(diǎn),矩形DEFG的頂點(diǎn)D、E分別在l1、l2上,頂點(diǎn)F、G都在x軸上,且點(diǎn)G與B點(diǎn)重合,那么S矩形DEFG:S△ABC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•懷化)如圖,已知直線a∥b,∠1=35°,則∠2=
35°
35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線m∥n,則下列結(jié)論成立的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案