解:(1)∵直線AB的解析式為y=2x+2,
∴點A、B的坐標(biāo)分別為A(0,2)、B(-1,0);
又直線l的解析式為y=-3x+9,∴點C的坐標(biāo)為(3,0).
由上,可設(shè)經(jīng)過A、B、C三點的拋物線的解析式為y=a(x+1)(x-3),將點A的坐標(biāo)代入,得:a=-
,
∴拋物線的解析式為y=-
x
2+
x+2,
∴拋物線的對稱軸為x=1;
由于拋物線的開口向下,所以函數(shù)值隨x的增大而增大時,x的取值范圍是x≤1.
(2)過A作AE∥BC,交拋物線于點E;顯然,點A、E關(guān)于直線x=1對稱,
∴點E的坐標(biāo)為E(2,2);
故梯形ABCE的面積為 S=
(2+4)×2=6.
(3)假設(shè)存在符合條件的點H,作直線FH交x軸于M;
由題意知,S
△CFM=3,設(shè)F(m,n),易知m=2;
將F(2,n)的坐標(biāo)代入y=-3x+9中,可求出n=3,則FG=3;
∴S
△CFM=
FG•CM=3,∴CM=2.
由C(3,0)知,M
1(1,0)、M
2(5,0),
設(shè)FM的解析式為y=kx+b:
由M
1(1,0)、F(2,3)得,F(xiàn)M
1解析式為y=3x-3,則FM
1與拋物線的交點H滿足:
,
整理得,2x
2+5x-15=0,
∴x=
,
由M
2(5,0)、F(2,3)得,F(xiàn)M
2解析式為y=-x+5,則FM
2與拋物線的交點H滿足:
,整理得,2x
2-7x+9=0,
∵△<0,∴不符合題意,舍去;
即:H點的橫坐標(biāo)為
.
分析:(1)已知直線AB和直線l的解析式,易求得A、B、C三點的坐標(biāo),利用待定系數(shù)法即可求出拋物線的解析式;進而得出拋物線的對稱軸方程,拋物線的開口向下,在對稱軸左側(cè)函數(shù)的函數(shù)值隨x的增大而增大.
(2)四邊形ABCE是梯形,且以BC為底,所以AE必與x軸平行,即A、E關(guān)于拋物線對稱軸對稱,由此能求得點E的坐標(biāo)和AE的長,再根據(jù)梯形的面積公式求解即可.
(3)在(2)題中已求得了梯形ABCE的面積,則直線l、FH和x軸所圍成的三角形的面積可得;將E點的橫坐標(biāo)代入直線l的解析式中即可求出F點的坐標(biāo),設(shè)FH與x軸的交點為M,以CM為底,點F的縱坐標(biāo)的絕對值為高即可表達(dá)出△FMC的面積,再根據(jù)上面求得的面積具體值,即可求出CM的長由此得出點M的坐標(biāo);首先求出直線FM的解析式,聯(lián)立拋物線的解析式即可得出H點的橫坐標(biāo).
點評:此題主要考查了函數(shù)解析式的確定、函數(shù)增減性的判定、圖形面積的解法等重要知識;最后一題中,要注意分情況討論,以免漏解.