【題目】已知四邊形ABCD為菱形,其邊長為6,,點P在菱形的邊AD、CD及對角線AC上運動,當時,則DP的長為________.

【答案】2或

【解析】

分以下三種情況求解:(1)點PCD上,如圖①,根據(jù)菱形的邊長以及CP1=2DP1可得出結果;(2)點P在對角線AC上,如圖②,在三角形CDP2中,可得出∠P2DC=90°,進而可得出DP2的長;(3)當點P在邊AD上,如圖③,過點D于點F,過點于點E,設,則,再用含x的代數(shù)式表示出CE,EP3,CP3的長,根據(jù)勾股定理列方程求解即可.

解:(1)當點PCD上時,如解圖,

,,;

2)當點P在對角線AC上時,如解圖,

,.

時,,;

圖① 圖②

3)當點P在邊AD上時,如解圖,過點D于點F,過點于點E,設,則,

,,,,

,,

.

,中,由勾股定理得,解得(舍).

綜上所述,DP的長為2.

故答案為:2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學六七年級有350名同學去春游,已知2A型車和1B型車可以載學生100人;1A型車和2B型車可以載學生110人.

1AB型車每輛可分別載學生多少人?

2)若租一輛A需要100元,一輛B120元,請你設計租車方案,使得恰好運送完學生并且租車費用最少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,B=10°,ACB=20°,AB=4cm,ABC逆時針旋轉一定角度后與ADE重合,且點C恰好成為AD的中點.

(1)指出旋轉中心,并求出旋轉的度數(shù);

(2)求出BAE的度數(shù)和AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了改善辦學條件,計劃購置一電子白板和一批筆記本電腦,經投標,購買一塊電子白板比買三臺筆記本電腦多3000元,購買4塊電子白板和5臺筆記本電腦共需80000.

(1)求購買一塊電子白板和一臺筆記本電腦各需多少元?

(2)根據(jù)該校實際情況需購買電子白板和筆記本電腦的總數(shù)為396,要求購買的總費用不超過2700000元,并購買筆記本電腦的臺數(shù)不超過購買電子白板數(shù)量的3倍,該校有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在平面直角坐標系中,點A(o,m),B(n,0),m, n滿足.

(1)A,B的坐標.

(2)如圖1, E為第二象限內直線AB上的一點,且滿足,求點E的橫坐標.

(3)如圖2,平移線段BAOC, BO是對應點,AC是對應點,連接AC, EBA的延長線上一點,連接EO, OF平分∠COE, AF平分∠EAC, OFAF于點F,若∠ABO+OEB=α,請在圖2中將圖形補充完整,并求∠F (用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,我們把橫、縱坐標都為整數(shù)的點叫做整點,設坐標軸的單位長度為1cm, 整點P從原點0出發(fā),速度為1cm/s, 且整點P做向上或向右運動(如圖1所示.運動時間(s)與整點(個)的關系如下表:

整點P從原點出發(fā)的時間(s)

可以得到整點P的坐標

可以得到整點P的個數(shù)

1

(0,1)(1,0

2

2

(0,2)(1,1)(2,0)

3

3

(0,3)(1,2)(2,1)(3,0)

4

.

·

.

根據(jù)上表中的規(guī)律,回答下列問題:

1)當整點P從點0出發(fā)4s時,可以得到的整點的個數(shù)為______個.

2)當整點P從點O出發(fā)8s時,在直角坐標系中描出可以得到的所有整點,并順次連結這些整點.

3)當整點P從點0出發(fā)______s時,可以得到整點(16,4)的位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,ADBC,要判別四邊形ABCD是平行四邊形,還需滿足條件(

A. A+C=180°B. B+D=180°

C. A+B=180°D. A+D=180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,EF分別為AB、BC上的點,且AE=BF,連結DE、AF,猜想DE、AF的關系并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018429日在瑞安外灘舉行了“微馬”活動,本次活動分“微馬組,體驗跑組,歡樂家庭跑組”三種賽程,其中“歡樂家庭跑組”蔡塞家庭只能以“二大一小”或“一大一小”的形式參加,參賽人數(shù)共100.

1)若參加“歡樂家庭跑組”的大人人數(shù)是小孩人數(shù)的1.5倍,問:“二大一小”和“一大一小”的組數(shù)分別有幾組?

2)若“二大一小”和“一大一小”的組數(shù)不相同且相差不超過5組,則本次比賽中參加 “歡樂家庭跑組”共有 組(直接寫出答案).

查看答案和解析>>

同步練習冊答案