【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC于點E.
(1)求證:DE是⊙O的切線.
(2)若∠B=30°,AB=8,求DE的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是正方形對角線上一動點,點在射線上,且,連接,為中點.
(1)如圖1,當(dāng)點在線段上時,試猜想與的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(2)如圖2,當(dāng)點在線段上時,(1)中的猜想還成立嗎?請說明理由;
(3)如圖3,當(dāng)點在的延長線上時,請你在圖3中畫出相應(yīng)的圖形,并判斷(1)中的猜想是否成立?若成立,請直接寫出結(jié)論;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量校園內(nèi)一棵不可攀的樹的高度,學(xué)校數(shù)學(xué)應(yīng)用實踐小組做了如下的探索:
實踐:根據(jù)《自然科學(xué)》中的反射定律,利用一面鏡子和一根皮尺,設(shè)計如右示意圖的測量方案:把鏡子放在離樹(AB)8.7米的點E處,然后沿著直線BE后退到點D,這是恰好在鏡子里看到樹梢頂點A,再用皮尺量得DE=2.7米,觀察者目高CD=1.6米,請你計算樹(AB)的高度(精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】常常聽說“勾3股4弦5”,是什么意思呢?它就是勾股定理,即“直角三角形兩直角邊長a,b與斜邊長c之間滿足等式:a2+b2=c2”的一個最簡單特例.我們把滿足a2+b2=c2的三個正整數(shù)a,b,c,稱為勾股數(shù)組,記為(a,b,c).
(1)請在下面的勾股數(shù)組表中寫出m、n、p合適的數(shù)值:
a | b | c | a | b | c |
3 | 4 | 5 | 4 | 3 | 5 |
5 | 12 | m | 6 | 8 | 10 |
7 | 24 | 25 | p | 15 | 17 |
9 | n | 41 | 10 | 24 | 26 |
11 | 60 | 61 | 12 | 35 | 37 |
… | … | … | … | … | … |
平面直角坐標(biāo)系中,橫、縱坐標(biāo)均為整數(shù)的點叫做整點(格點).過x軸上的整點作y軸的平行線,過y軸上的整點作x軸的平行線,組成的圖形叫做正方形網(wǎng)格(有時簡稱網(wǎng)格),這些平行線叫做格邊,當(dāng)一條線段AB的兩端點是格邊上的點時,稱為AB在格邊上.頂點均在格點上的多邊形叫做格點多邊形.在正方形網(wǎng)格中,我們可以利用勾股定理研究關(guān)于圖形面積、周長的問題,其中利用割補法、作圖法求面積非常有趣.
(2)已知△ABC三邊長度為4、13、15,請在下面的網(wǎng)格中畫出格點△ABC并計算其面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點之間的距離表示為AB,在數(shù)軸上A、B兩點之間的距離AB=|a﹣b|.
利用數(shù)形結(jié)合思想回答下列問題:
(1)數(shù)軸上表示1和3兩點之間的距離 .
(2)數(shù)軸上表示﹣12和﹣6的兩點之間的距離是 .
(3)數(shù)軸上表示x和1的兩點之間的距離表示為 .
(4)若x表示一個有理數(shù),且﹣4<x<2,則|x﹣2|+|x+4|= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AC=BC,過點C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N.
(1)MN=AM+BN成立嗎?為什么?
(2)若過點C在△ABC內(nèi)作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為3厘米,點B為⊙O外一點,OB交⊙O于點A,且AB=OA,動點P從點A出發(fā),以π厘米/秒的速度在⊙O上按逆時針方向運動一周回到點A立即停止.當(dāng)點P運動的時間為( 。┟霑r,直線BP與⊙O相切.
A. 1 B. 5 C. 0.5或5.5 D. 1或5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察下列圖形與等式的關(guān)系,并填空:
(2)利用(1)中結(jié)論,解決下列問題:
①1+3+5+…+2005= ;
②計算:101+103+105+…+199;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于A、B兩點.
(1)根據(jù)圖象,分別寫出A、B的坐標(biāo);
(2)求出兩函數(shù)解析式;
(3)根據(jù)圖象回答:當(dāng)為何值時,一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com