如圖是一個(gè)半圓形橋洞截面示意圖,圓心為O,直徑AB是河底線,弦CD是水位線,CD∥AB,且CD=24m,OE⊥CD于點(diǎn)E.已測得sin∠DOE=.根據(jù)需要,水面要以每小時(shí)0.5m的速度下降,則經(jīng)過    小時(shí)能將水排干.
【答案】分析:解決此題的關(guān)鍵是求出OE的值.由垂徑定理易求出DE的長,Rt△OED中,根據(jù)DE的長以及∠EOD的正弦值,可求出半徑OD的長,再由勾股定理即可求出OE的值.OE的長除以水面下降的速度,即可求出將水排干所需要的時(shí)間.
解答:解:Rt△OED中,DE=CD=12,sin∠DOE=,
∴OD=DE÷sin∠DOE=12÷=13.
由勾股定理得:OE===5.
∴將水排干需要的時(shí)間為:5÷0.5=10(小時(shí)).
點(diǎn)評:此題主要考查了垂徑定理以及解直角三角形的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是一個(gè)半圓形橋洞截面示意圖,圓心為O,直徑AB是河底線,弦CD是水位線,CD∥AB,且CD=24 m,OE⊥CD于點(diǎn)E.已測得sin∠DOE=
1213

(1)求半徑OD;
(2)根據(jù)需要,水面要以每小時(shí)0.5m的速度下降,則經(jīng)過多長時(shí)間才能將水排干?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是一個(gè)半圓形橋洞截面示意圖,圓心為O,直徑AB是河底線,弦CD是水位線,CD∥AB,且AB=26m,OE⊥CD于點(diǎn)E.水位正常時(shí)測得OE:CD=5:24
(1)求CD的長;
(2)現(xiàn)汛期來臨,水面要以每小時(shí)4m的速度上升,則經(jīng)過多長時(shí)間橋洞會(huì)剛剛被灌滿?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是一個(gè)半圓形橋洞截面示意圖,圓心為O,直徑AB是河底線,弦CD是水位線,CD∥AB,且CD=24m,OE⊥CD于點(diǎn)E.已測得sin∠DOE=
1213
.根據(jù)需要,水面要以每小時(shí)0.5m的速度下降,則經(jīng)過
 
小時(shí)能將水排干.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)半圓形橋洞截面示意圖,圓心為O,直徑AB是河底線,弦CD是水位線,CD∥AB,且CD=24m,OE⊥CD于點(diǎn)E.已測得DE:OD=12:13
(1)求半徑OD;
(2)根據(jù)需要,水面要以每小時(shí)0.5m的速度下降,則經(jīng)過多長時(shí)間才能將水排干?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖是一個(gè)半圓形橋洞截面示意圖,圓心為O,直徑AB是河底線,弦CD是水位線,CD∥AB,且AB=26m,OE⊥CD于點(diǎn)E.水位正常時(shí)測得OE:CD=5:24,求CD的長;

(2)如圖,已知:AB是⊙O的直徑,⊙O過BC的中點(diǎn)D,且DE⊥AC.求證:DE是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊答案