【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形ABCD的對角線AC與BD交于點(diǎn)P(-1,2),AB⊥x軸于點(diǎn)E,正比例函數(shù)y=mx的圖像與反比例函數(shù)的圖像交于A,P兩點(diǎn).
(1)求m,n的值與點(diǎn)A的坐標(biāo)
(2)求的值
【答案】(1)m=﹣2,n=1,點(diǎn)A的坐標(biāo)為(1,﹣2);(2)
【解析】
(1)根據(jù)點(diǎn)P的坐標(biāo),利用待定系數(shù)法可求出m,n的值,聯(lián)立正、反比例函數(shù)解析式成方程組,通過解方程組可求出點(diǎn)A的坐標(biāo)(利用正、反比例函數(shù)圖象的對稱性結(jié)合點(diǎn)P的坐標(biāo)找出點(diǎn)A的坐標(biāo)亦可);
(2)由點(diǎn)A的坐標(biāo)可得出AE,OE,AO的長,由相似三角形的性質(zhì)可得出∠CDP=∠AOE,再利用正弦的定義即可求出sin∠CDB的值.
(1)解:將點(diǎn)P(-1,2)代入y=mx,得:2=-m,
解得:m=-2,
∴正比例函數(shù)解析式為y=-2x;
將點(diǎn)P(-1,2)代入y=,得:2=-(n-3),
解得:n=1,
∴反比例函數(shù)解析式為y=-.
聯(lián)立正、反比例函數(shù)解析式成方程組,得:,
解得:,,
∴點(diǎn)A的坐標(biāo)為(1,-2).
(2)解:∵點(diǎn)A的坐標(biāo)為(1,-2),
∴AE=2,OE=1,AO=.
∵四邊形ABCD是菱形,
∴AC⊥BD,AB∥CD,
∴∠DCP=∠BAP,即∠DCP=∠OAE.
∵AB⊥x軸,
∴∠AEO=∠CPD=90°,
∴△CPD∽△AEO,
∴∠CDP=∠AOE,
∴sin∠CDB=sin∠AOE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形和正六邊形邊長均為1,如圖所示,把正方形放置在正六邊形外,使邊與邊重合,按下列步驟操作:將正方形在正六邊形外繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使邊與邊重合,完成第一次旋轉(zhuǎn);再繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使邊與邊重合,完成第二次旋轉(zhuǎn);此時(shí)點(diǎn)經(jīng)過路徑的長為___________.若按此方式旋轉(zhuǎn),共完成六次,在這個(gè)過程中點(diǎn),之間距離的最大值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,漏壺是一種古代計(jì)時(shí)器.在它內(nèi)部盛一定量的水,水從壺下的小孔漏出.壺內(nèi)壁有刻度,人們根據(jù)壺中水面的位置計(jì)算時(shí)間.用x(小時(shí))表示漏水時(shí)間,y(厘米)表示壺底到水面的高度,某次計(jì)時(shí)過程中,記錄到部分?jǐn)?shù)據(jù)如下表:
漏水時(shí)間x(小時(shí)) | … | 3 | 4 | 5 | 6 | … |
壺底到水面高度y(厘米) | … | 9 | 7 | 5 | 3 | … |
(1)問y與x的函數(shù)關(guān)系屬于一次函數(shù)、二次函數(shù)和反比例函數(shù)中的哪一種?求出該函數(shù)解析式及自變量x的取值范圍;
(2)求剛開始計(jì)時(shí)時(shí)壺底到水面的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中央電視臺(tái)的“中國詩詞大賽”節(jié)目文化品位高,內(nèi)容豐富,某校初二年級(jí)模擬開展“中國詩詞大賽”比賽,對全年級(jí)同學(xué)成績進(jìn)行統(tǒng)計(jì)后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個(gè)等級(jí),并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合統(tǒng)計(jì)圖中的信息,回答下列問題:
(1)扇形統(tǒng)計(jì)圖中“優(yōu)秀”所對應(yīng)的扇形的圓心角為 度,并將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)此次比賽有四名同學(xué)活動(dòng)滿分,分別是甲、乙、丙、丁,現(xiàn)從這四名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國詩詞大賽”比賽,請用列表法或畫樹狀圖法,求出選中的兩名同學(xué)恰好是甲、丁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為2,A為圓內(nèi)一定點(diǎn),AO=1.P為圓上一動(dòng)點(diǎn),以AP為邊作等腰△APG,AP=PG,∠APG=120°,OG的最大值為( 。
A.1+B.1+2C.2+D.2﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)(k>0)與一次函數(shù)的圖象相交于兩點(diǎn)A(,),B(,),線段AB交y軸與C,當(dāng)|- |=2且AC = 2BC時(shí),k、b的值分別為( )
A. k=,b=2 B. k=,b=1 C. k=,b= D. k=,b=
【答案】D
【解析】∵AC=2BC,∴A點(diǎn)的橫坐標(biāo)的絕對值是B點(diǎn)橫坐標(biāo)絕對值的兩倍.∵點(diǎn)A、點(diǎn)B都在一次函數(shù)y=x+b的圖象上,∴設(shè)B(m, m+b),則A(-2m,-m+b),∵|-|=2,∴m-(-2m)=2,解得m=,又∵點(diǎn)A、點(diǎn)B都在反比例函數(shù)的圖象上,∴(+b)=(-)×(-+b),解得b=,∴k=×(+)=,故選D.
【題型】單選題
【結(jié)束】
11
【題目】若點(diǎn)(4,m)在反比例函數(shù)(x≠0)的圖象上,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)A(x1,1)、B(x2,﹣2)、C(x3,﹣3)在反比例函數(shù)y=﹣的圖象上,則x1、x2、x3的大小關(guān)系是( 。
A.x1<x2<x3B.x1<x3<x2C.x3<x1<x2D.x2<x1<x3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列6個(gè)結(jié)論:①abc<0;②b<a+c; ③4a+2b+c<0;④2a+b+c>0;⑤>0;⑥2a+b=0;其中正確的結(jié)論的有_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)不僅是一門學(xué)科,也是一種文化,即數(shù)學(xué)文化.數(shù)學(xué)文化包括數(shù)學(xué)史、數(shù)學(xué)美和數(shù)學(xué)應(yīng)用等多方面.古時(shí)候,在某個(gè)王國里有一位聰明的大臣,他發(fā)明了國際象棋,獻(xiàn)給了國王,國王從此迷上了下棋,為了對聰明的大臣表示感謝,國王答應(yīng)滿足這位大臣的一個(gè)要求.大臣說:“就在這個(gè)棋盤上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒······一只到第格.”“你真傻!就要這么一點(diǎn)米粒?”國王哈哈大笑.大臣說:“就怕您的國庫里沒有這么多米!”國王的國庫里真沒有這么多米嗎?題中問題就是求是多少?請同學(xué)們閱讀以下解答過程就知道答案了.
設(shè),
則
即:
事實(shí)上,按照這位大臣的要求,放滿一個(gè)棋盤上的個(gè)格子需要粒米.那么到底多大呢?借助計(jì)算機(jī)中的計(jì)算器進(jìn)行計(jì)算,可知答案是一個(gè)位數(shù): ,這是一個(gè)非常大的數(shù),所以國王是不能滿足大臣的要求.請用你學(xué)到的方法解決以下問題:
我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的倍,則塔的頂層共有多少盞燈?
計(jì)算:
某中學(xué)“數(shù)學(xué)社團(tuán)”開發(fā)了一款應(yīng)用軟件,推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問題的答案:
已知一列數(shù):,其中第一項(xiàng)是,接下來的兩項(xiàng)是,再接下來的三項(xiàng)是,以此類推,求滿足如下條件的所有正整數(shù),且這一數(shù)列前項(xiàng)和為的正整數(shù)冪.請直接寫出所有滿足條件的軟件激活碼正整數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com