已知點(diǎn)P為線段CB上方一點(diǎn),CA⊥CB,PA⊥PB,且PA=PB,且PA=PB,PM⊥BC于M,若CA=1,PM=4.求CB的長.
分析:根據(jù)全等三角形的判定得出△PMB≌△PNA,進(jìn)而分類討論得出答案即可.
解答:解:此題分以下兩種情況:
①如圖1,過P作PN⊥CA于N,
∵PA⊥PB,
∴∠APB=90°,
∵∠NPM=90°,
∴∠NPA=∠BPM,
在△PMB和△PNA中,
∠N=∠BMP
∠NPA=∠BPM
PA=PB
,
∴△PMB≌△PNA,
∴PM=PN=4=CM,BM=AN=3,
∴BC=7;
②如圖2,過P作PN⊥CA于N,
∵PA⊥PB,
∴∠APB=90°,
∵∠NPM=90°,
∴∠NPA=∠BPM,
在△PMB和△PNA中,
∠N=∠BMP
∠NPA=∠BPM
PA=PB

∴△PMB≌△PNA,
∴PM=PN=4=CM,BM=AN=5,
可得BC=9.
綜合上述CB=7或9.
點(diǎn)評:此題主要考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定定理得出是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)C為線段AB上一點(diǎn),分別以AC、BC為邊在線段AB同側(cè)作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AE與BD交于點(diǎn)F,
(1)如圖1,若∠ACD=60°,則∠AFB=
 
;如圖2,若∠ACD=90°,則∠AFB=
 
;如圖3,若∠ACD=120°,則∠AFB=
 

(2)如圖4,若∠ACD=α,則∠AFB=
 
(用含α的式子表示);
(3)將圖4中的△ACD繞點(diǎn)C順時針旋轉(zhuǎn)任意角度(交點(diǎn)F至少在BD、AE中的一條線段上),變成如圖5所示的情形,若∠ACD=α,則∠AFB與α的有何數(shù)量關(guān)系?并給予證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)C為線段AB上一點(diǎn),分別以AC、BC為邊在線段AB的同側(cè)作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AE與BD交于點(diǎn)F.

(1)如圖1,若∠ACD=60°,則∠AFB=則
120°
120°
,如圖2,若∠ACD=90°,則∠AFB=
90°
90°
,如圖3,若∠ACD=α,則∠AFB=
180°-α
180°-α
(用含α的式子表示);
(2)設(shè)∠ACD=α,將圖3中的△ACD繞點(diǎn)C順時針旋轉(zhuǎn)任意角度(交點(diǎn)F至少在BD、AE中的一條線段上),如圖4,試探究∠AFB與α的數(shù)量關(guān)系,并予以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)C為線段AB上一點(diǎn),分別以AC、BC為邊在線段AB同側(cè)作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AE與BD交于點(diǎn)F.
(1)如圖1,求證:△ACE≌△DCB.
(2)如圖1,若∠ACD=60°,則∠AFB=
120°
120°
;如圖2,若∠ACD=90°,則∠AFB=
90°
90°

(3)如圖3,若∠ACD=β,則∠AFB=
180°-β
180°-β
(用含β的式子表示)并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)C為線段AB上一點(diǎn),分別以AC、BC為邊在線段AB同側(cè)作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AE與BD交于點(diǎn)F
(1)如圖1,若∠ACD=60゜,則∠AFB=
120°
120°
;
(2)如圖2,若∠ACD=α,則∠AFB=
180°-α
180°-α
(用含α的式子表示);
(3)將圖2中的△ACD繞點(diǎn)C順時針旋轉(zhuǎn)任意角度(交點(diǎn)F至少在BD、AE中的一條線段上),如圖3.試探究∠AFB與α的數(shù)量關(guān)系,并予以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知點(diǎn)C為線段AB上一點(diǎn),CB>CA,分別以線段AC、BC為邊在線段AB同側(cè)作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AE與BD交于點(diǎn)F.
(1)說明AE=DB的理由.
(2)如果∠ACD=60°,求∠AFB的度數(shù).
(3)將圖1中的△ACD繞著點(diǎn)C順時針旋轉(zhuǎn)某個角度,到如圖2的位置,如果∠ACD=α,那么∠AFB與α有何數(shù)量關(guān)系(用含α的代數(shù)式表示)?試說明理由.

查看答案和解析>>

同步練習(xí)冊答案