【題目】在中,,是直線上一點,以為一條邊在右側(cè)作,使,,連接.
(1)如圖,當(dāng)點在延長線上移動時,若,則_____.
(2)設(shè),.
①當(dāng)點在延長線上移動時,與之間有什么數(shù)量關(guān)系?請說明理由;
②當(dāng)點在直線上(不與兩點重合)移動時,與之間有什么數(shù)量關(guān)系?
請直接寫出你的結(jié)論.
【答案】(1);(2) ①,理由見解析;②當(dāng)在線段上時,,當(dāng)點在線段延長線或反向延長線上時,.
【解析】
(1)證△BAD≌△CAE,推出∠B=∠ACE,根據(jù)三角形外角性質(zhì)求出即可;
(2)①證△BAD≌△CAE,推出∠B=∠ACE,根據(jù)三角形外角性質(zhì)求出即可
②分當(dāng)D在線段BC上時,當(dāng)點D在線段BC反向延長線上時,當(dāng)點D在線段BC的延長線上時三種情況討論,根據(jù)三角形外角性質(zhì)求出即可.
解:(1),
,
,
在和中
,
,
,
,
,
,
;
(2)①解:當(dāng)點在線段的延長線上移動時,與之間的數(shù)量關(guān)系是,理由是:
,
,
,
在和中
,
,
,
,
,
,,
;
②分三種情況:
i)當(dāng)D在線段BC上時,如圖2,α+β=180°,
理由是:同理可證明:△ABD≌△ACE(SAS),
∴∠ADB=∠AEC,∠ABC=∠ACE,
∵∠ADC+∠ADB=180°,
∴∠ADC+∠AEC=180°,
∴∠DAE+∠DCE=180°,
∵∠BAC=∠DAE=α,∠DCE=β,
∴α+β=180°,
ii)當(dāng)點D在線段BC反向延長線上時,如圖3,α=β.
如圖3,同理可證明:△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,
∵∠ACE=∠ACD+∠DCE,∠ABD=∠ACD+∠BAC,
∴∠ACD+∠DCE=∠ACD+∠BAC,
∴∠BAC=∠DCE,
∵∵∠BAC=α,∠DCE=β,
∴α=β;
iii)當(dāng)點D在線段BC的延長線上時,如圖1,α=β.
綜上,當(dāng)點D在BC上移動時,α=β或α+β=180°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新華商場銷售某種冰箱,每臺進(jìn)價為2500元,銷售價為2900元,平均每天能售出8臺;調(diào)查發(fā)現(xiàn),當(dāng)銷售價每降低50元,平均每天就能多售出4臺.商場要想使這種冰箱的銷售利潤平均每天達(dá)到5000元,每臺冰箱應(yīng)該降價多少元?若設(shè)每臺冰箱降價x元,根據(jù)題意可列方程( )
A. (2900-x)(8+4×)=5000 B. (400-x)(8+4×)=5000
C. 4(2900-x)(8+)=5000 D. 4(400-x)(8+)=5000
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】纜車,不僅提高了景點接待游客的能力,而且解決了登山困難者的難題.如圖,當(dāng)纜車經(jīng)過點A到達(dá)點B時,它走過了700米.由B到達(dá)山頂D時,它又走過了700米.已知線路AB與水平線的夾角為16°,線路BD與水平線的夾角β為20°,點A的海拔是126米.求山頂D的海拔高度(畫出設(shè)計圖,寫出解題思路即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校選學(xué)生會正副主席,需要從甲班的2名男生1名女生(男生用A,B表示,女生用a表示)和乙班的1名男生1名女生(男生用C表示,女生用b表示)共5人中隨機(jī)選出2名同學(xué).
(1)用樹狀圖或列表法列出所有可能情形;
(2)求2名同學(xué)來自不同班級的概率;
(3)求2名同學(xué)恰好1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AC=2AB,點D是AC的中點.將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個端點分別與A、D重合,連接BE、EC.
試猜想線段BE和EC的數(shù)量及位置關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=3,AD=4,動點Q從點A出發(fā),以每秒1個單位的速度,沿AB向點B移動;同時點P從點B出發(fā),仍以每秒1個單位的速度,沿BC向點C移動,連接QP,QD,PD.若兩個點同時運動的時間為x秒(0<x≤3),解答下列問題:
(1)設(shè)△QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時,S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y= x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).
(1)求拋物線的解析式;
(2)判斷△ABC的形狀,證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示.下列結(jié)論:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正確的個數(shù)有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓心角為90°的扇形OAB中,點F、C在半徑OA、OB上,且OC=OF,以CF為邊作正方形CDEF,另兩頂點D、E在弧AB上,若扇形OAB的面積為25π,則正方形CDEF的面積為( )
A. 25 B. 40 C. 50 D. π
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com