(12分)如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點(diǎn)D,且BD=8cm.點(diǎn)

M從點(diǎn)A出發(fā),沿AC的方向勻速運(yùn)動(dòng),速度為2cm/s;同時(shí)直線PQ由點(diǎn)B出發(fā),沿BA

的方向勻速運(yùn)動(dòng),速度為1cm/s,運(yùn)動(dòng)過程中始終保持PQ∥AC,直線PQ交AB于點(diǎn)P、交

BC于點(diǎn)Q、交BD于點(diǎn)F.連接PM,設(shè)運(yùn)動(dòng)時(shí)間為ts(0<t<5).

(1)當(dāng)t為何值時(shí),四邊形PQCM是平行四邊形?

(2)設(shè)四邊形PQCM的面積為ycm2,求y與t之間的函數(shù)關(guān)系式;

(3)是否存在某一時(shí)刻t,使?若存在,求出t的值;若不存在,說明理由;

(4)連接PC,是否存在某一時(shí)刻t,使點(diǎn)M在線段PC的垂直平分線上?若存在,求出此時(shí)t的值;若不存在,說明理由.

 

解:(1)假設(shè)四邊形PQCM是平行四邊形,則PM∥QC,∴AP=AM

,解得

答:當(dāng)s時(shí),四邊形PQCM是平行四邊形。

(2)過P作PE⊥AC,交AC于E。

∵PQ∥AC

∴△PBQ∽△ABC,∴△PBQ是等腰三角形,PQ=PB=,

,即,解得,

又∵

答:y與t之間的函數(shù)關(guān)系式是

(3)

當(dāng)時(shí),

解得,(舍去)

答:當(dāng)時(shí),S四邊形PQCM=SABC

(4)假設(shè)存在某一時(shí)刻t,使點(diǎn)M在線段PC的垂直平分線上,則MP=MC,

過M作MH⊥AB,交AB于H,由△AHM∽△ADB

 

,又

在Rt△HMP中,

又∵

解得:(舍去)

答:當(dāng)s時(shí),點(diǎn)M在線段PC的垂直平分線上。

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)

如圖,在平面直角坐標(biāo)系中,拋物線與x軸的右交點(diǎn)為點(diǎn)A,與y

 

軸的交點(diǎn)為點(diǎn)B,過點(diǎn)B作x軸的平行線BC,交拋物線于點(diǎn)C,連結(jié)AC.現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從O,C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒4個(gè)單位的速度沿OA向終點(diǎn)A移動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿CB向點(diǎn)B移動(dòng),點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng),線段OC,PQ相交于點(diǎn)D,過點(diǎn)D作DE∥OA,交CA于點(diǎn)E,射線QE交x軸于點(diǎn)F.設(shè)動(dòng)點(diǎn)P,Q移動(dòng)的時(shí)間為t(單位:秒)

(1)求A,B,C三點(diǎn)的坐標(biāo)和拋物線的頂點(diǎn)的坐標(biāo);

(2)當(dāng)t為何值時(shí),四邊形PQCA為平行四邊形?

(3)請(qǐng)說明當(dāng)0<t<4.5時(shí),△PQF的面積總為定值;

(4)當(dāng)0≤t≤4.5是否存在△PQF為等腰三角形?當(dāng)t為何值時(shí),△PQF為等腰三角形?(直接寫出結(jié)果)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省黃岡市初一上學(xué)期期末模擬數(shù)學(xué)卷 題型:解答題

(本題滿分12分)
如圖,在△ABC中,AD平分∠BAC.

(1)若AC=BC,∠B︰∠C=2︰1,試寫出圖中的所有等腰三角形,并給予證明.
(2)若ABBD=AC,求∠B︰∠C 的比值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川瀘州卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川瀘州12分)如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)B的坐標(biāo)為(1,),已知拋物線y=ax2+bx+c(a≠0)經(jīng)過三點(diǎn)A、B、O(O為原點(diǎn)).

(1)求拋物線的解析式;

(2)在該拋物線的對(duì)稱軸上,是否存在點(diǎn)C,使△BOC的周長最小?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)如果點(diǎn)P是該拋物線上x軸上方的一個(gè)動(dòng)點(diǎn),那么△PAB是否有最大面積?若有,求出此時(shí)P點(diǎn)的坐標(biāo)及△PAB的最大面積;若沒有,請(qǐng)說明理由.(注意:本題中的結(jié)果均保留根號(hào))

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(廣東廣州卷)數(shù)學(xué)解析版 題型:解答題

(2011廣西梧州,26,12分)如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6cm,AB=8cm,BC=14cm.動(dòng)點(diǎn)P、Q都從點(diǎn)C出發(fā),點(diǎn)P沿C→B方向做勻速運(yùn)動(dòng),點(diǎn)Q沿C→D→A方向做勻速運(yùn)動(dòng),當(dāng)P、Q其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).

(1)求CD的長;

(2)若點(diǎn)P以1cm/s速度運(yùn)動(dòng),點(diǎn)Q以cm/s的速度運(yùn)動(dòng),連接BQ、PQ,設(shè)△BQP面積為S(cm2),點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t(s),求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍;

(3)若點(diǎn)P的速度仍是1cm/s,點(diǎn)Q的速度為acm/s,要使在運(yùn)動(dòng)過程中出現(xiàn)PQ∥DC,請(qǐng)你直接寫出a的取值范圍.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省成都市溫江區(qū)初三第一學(xué)期期末數(shù)學(xué)卷 題型:解答題

(本題滿分12分)

如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)A、B、C.

(1)請(qǐng)完成如下操作:

①以點(diǎn)O為原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長為單位長,建立平面直角坐標(biāo)系; ②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,

   并連結(jié)AD、CD.

(2)請(qǐng)?jiān)冢?)的基礎(chǔ)上,完成下列填空:

①寫出點(diǎn)的坐標(biāo):C         、D           ;

②⊙D的半徑=            (結(jié)果保留根號(hào));

③若扇形ADC是一個(gè)圓錐的側(cè)面展開圖,則該圓錐的底面的面積為         ;(結(jié)果保留

(3)若E(7,0),試判斷直線EC與⊙D的位置關(guān)系,并說明你的理由

 

查看答案和解析>>

同步練習(xí)冊(cè)答案