分析 先將圖形展開(kāi),再根據(jù)兩點(diǎn)之間線段最短,由勾股定理可得出.
解答 解:圓柱的側(cè)面展開(kāi)圖是一個(gè)矩形,此矩形的長(zhǎng)等于圓柱底面周長(zhǎng),C是邊的中點(diǎn),矩形的寬即高等于圓柱的母線長(zhǎng).
∵AB=π•$\frac{4}{π}$=4,CB=4.
∴AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=4$\sqrt{2}$.
故答案為:4$\sqrt{2}$.
點(diǎn)評(píng) 此題主要考查了平面展開(kāi)圖最短路徑問(wèn)題,此矩形的長(zhǎng)等于圓柱底面周長(zhǎng),矩形的寬即高等于圓柱的母線長(zhǎng).本題就是把圓柱的側(cè)面展開(kāi)成矩形,“化曲面為平面”,用勾股定理解決.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a=8,b=15,c=17 | B. | a=9,b=12,c=15 | C. | a=9,b=40,c=41 | D. | a:b:c=2:3:4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x3•x2=2x6 | B. | (-3x3)2=-6x6 | C. | (x3)2=x5 | D. | x6÷x2=x4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com