問題:你能比較20002001和20012000的大小嗎?

為了解決這個問題,寫出它的一般形式,即比較nn+1和(n+1)n的大小(n是自然數(shù)),然后我們從分析n=1,n=2,n=3,…這些簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納猜想得出結論:

(1)通過計算,比較下列各組中兩個數(shù)的大小(在橫線上填寫“>”、“<”或“=”號):

①12________21  ②23________32 、34________43 、45________54 、56________65

(2)從第(1)題的結果經(jīng)過歸納,可以猜想出nn+1和(n+1)n的大小關系是________.

(3)根據(jù)上面歸納猜想到的結論,試比較下列兩個數(shù)的大。20002001________20012000

答案:
解析:

  (1)①<;②<;③>;④>;⑤>

  (2)當1≤n≤2時nn+1<(n+1)n,當n≥3時,nn+1>(n+1)n

  (3)20002001>20012000


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、問題:你能比較兩個數(shù)20022003與20032002的大小嗎?為了解決這個問題,我們先把它抽象成這樣的問題:寫成它的一般形式,即比較nn+1和(n+1)n的大。╪是自然數(shù)).然后,我們分析n=1,n=2,n=3…這些簡單情形入手,從而發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,才想出結論.
(1)通過計算,比較下列各組中兩個數(shù)的大。ㄔ诳崭裰刑睢埃肌薄埃尽薄=”)
①12<21②23<32③34>43④45>54
⑤56>65⑥66>75
(2)從第(1)題的結果經(jīng)過歸納,可以猜想出nn+1和(n+1)n的大小關系;
(3)根據(jù)上面歸納猜想得到的一般結論,試比較下列兩個數(shù)的大。20022003>20032002

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(一)問題:你能比較兩個數(shù)20092010和20102009的大小嗎?
為了解決這個問題,我們先把它抽象成數(shù)學問題,寫出他的一般形式,即比較nn+1和(n+1)n的大。╪為自然數(shù)),然后我們分析這些簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結論.
(1)通過計算,比較下列各組數(shù)的大。
①12
 
21;②23
 
32;③34
 
43;④45
 
54;⑤56
 
65
(2)從第(1)題的結果經(jīng)過歸納,可以猜想出nn+1
 
(n+1)n(n≥3)
(3)根據(jù)上面歸納猜想得到的一般結論,試比較下列兩個數(shù)的大。
①20092010
 
20102009;②-20092010
 
-20102009
(二)請比較大。
231981+1
231982+1
 
231982+1
231983+1
,并寫出理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題:你能比較兩個數(shù)20062007與20072006的大小嗎?為了解決問題,首先把它抽象成數(shù)學問題,寫出它的一般形式,即比較nn+1與(n+1)n的大。╪是正整數(shù)),然后,從分析n=1,n=2,n=3,…,這些簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結論.
(1)通過計算,比較下列各組中兩個數(shù)的大小(填“>”,“<”,“=”)
①12
21; ②23
32;③34
43;④45
54;⑤56
65; …
(2)根據(jù)上面的歸納猜想得到的一般結論,試比較下面兩個數(shù)的大。20062007
20072006
(3)從第(1)題的結果經(jīng)過歸納,可以猜想出nn+1與(n+1)n的大小關系是
當n=1或2時,nn+1<(n+1)n;當n>2的整數(shù)時,nn+1>(n+1)n
當n=1或2時,nn+1<(n+1)n;當n>2的整數(shù)時,nn+1>(n+1)n

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題:你能比較20112012和20122011的大小嗎?
為了解決這個問題,我們先把它抽象成數(shù)學問題,寫出它的-般形式,即比較nn+1和(n+1)n的大。╪是正整數(shù)),然后,我們從分析n=1,n=2,n=3,…,這些簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結論.
(1)通過計算,比較下列各組中兩個數(shù)的大。ㄌ睢埃肌薄埃尽被颉=”):
①12
21;②23
32;③34
43;
④45
54;⑤56
65;…
(2)將題(1)的結果進行歸納,可以猜想出nn+1和(n+1)n的大小關系是
當n<3時,nn+1<(n+1)n,當n≥3時,nn+1>(n+1)n
當n<3時,nn+1<(n+1)n,當n≥3時,nn+1>(n+1)n
;
(3)根據(jù)上面歸納猜想后得到的一般結論,試比較下列兩個數(shù)的大小:20112012
20122011

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題:你能比較兩個數(shù)20102011和20112010的大小嗎?為了解決問題,我們先把它抽象成數(shù)學問題,寫出它的一般形式,即比較nn+1和(n+1)n的大。╪是正整數(shù)),然后,從分析n=1,n=2,n=3,…這些簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結論:已通過計算,比較下列各組數(shù)中兩個數(shù)的大。ㄌ睿,<,=)
①12
21;②23
32;③34
43;④45
54;⑤56
65
(1)從上面的結果經(jīng)過歸納,可以猜想出nn+1和(n+1)n的大小關系是
當n<3時,nn+1<(n+1)n,當n>3時,nn+1>(n+1)n
當n<3時,nn+1<(n+1)n,當n>3時,nn+1>(n+1)n

(2)根據(jù)上面的歸納猜想得到的一般結論,試比較下列兩個數(shù)的大。20102011
20112010

查看答案和解析>>

同步練習冊答案