(本小題10分)如圖, 拋物線與x軸的一個(gè)交點(diǎn)是A,與y軸的交點(diǎn)是B,且OA、OB(OA<OB)的長(zhǎng)是方程的兩個(gè)實(shí)數(shù)根.

【小題1】(1)求A、B兩點(diǎn)的坐標(biāo);
【小題2】 (2) 求出此拋物線的的解析式及頂點(diǎn)D的坐標(biāo);
【小題3】(3)求出此拋物線與x軸的另一個(gè)交點(diǎn)C的坐標(biāo);
【小題4】(4)在直線BC上是否存在一點(diǎn)P,使四邊形PDCO為梯形?若存在,求出P點(diǎn)坐標(biāo),若不存在,說(shuō)明理由.


【小題1】解:(1)∵的兩個(gè)實(shí)數(shù)根為
OA、OB(OA<OB)的長(zhǎng)是方程的兩個(gè)實(shí)數(shù)根
∴ OA=1,OB=5
∴ A(1,0),   B(0,5)               
【小題2】(2)∵拋物線與x軸的一個(gè)交點(diǎn)是A,與y軸的交點(diǎn)是B

解得:
∴所求二次函數(shù)的解析式為:-------------------------3分
頂點(diǎn)坐標(biāo)為:D(-2,9)  
【小題3】(3)此拋物線與x軸的另一個(gè)交點(diǎn)C的坐標(biāo)為(-5,0)
【小題4】(4)直線CD的解析式為:
y="3x+15    " --------------------------6分
直線BC的解析式為:
y="x+5     " ---------------------------7分
①若以CD為底,則OP∥CD
直線OP的解析式為:y=3x
于是有 解得: 
∴點(diǎn)P的坐標(biāo)為( --------------8分
②若以O(shè)C為底,則DP∥CO
直線DP的解析式為:y=9
于是有    解得:
∴點(diǎn)P的坐標(biāo)為(4,9)                   --------------------------9分
∴在直線BC上存在點(diǎn)P,使四邊形PDCO為梯形且P點(diǎn)坐標(biāo)為(
(4,9)                         解析:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(11·湖州)(本小題10分)

如圖,已知E、F分別是□ABCD的邊BC、AD上的點(diǎn),且BE=DF。

⑴求證:四邊形AECF是平行四邊形;

⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長(zhǎng)。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(11·湖州)(本小題10分)
如圖,已知E、F分別是□ABCD的邊BC、AD上的點(diǎn),且BE=DF。
⑴求證:四邊形AECF是平行四邊形;
⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省啟東市九年級(jí)寒假作業(yè)檢測(cè)數(shù)學(xué)卷 題型:解答題

(本小題10分)

如圖,拋物線與x軸交與A(1,0),B(- 3,0)兩點(diǎn),

1.(1)求該拋物線的解析式;

2.(2)拋物線交y軸與C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆北京一六三中初三上學(xué)期模擬數(shù)學(xué)卷 題型:解答題

(本小題10分)如圖,      拋物線與x軸的一個(gè)交點(diǎn)是A,與y軸的交點(diǎn)是B,且OA、OB(OA<OB)的長(zhǎng)是方程的兩個(gè)實(shí)數(shù)根.

1.(1)求A、B兩點(diǎn)的坐標(biāo);

2. (2) 求出此拋物線的的解析式及頂點(diǎn)D的坐標(biāo);

3.(3)求出此拋物線與x軸的另一個(gè)交點(diǎn)C的坐標(biāo);

4.(4)在直線BC上是否存在一點(diǎn)P,使四邊形PDCO為梯形?若存在,求出P點(diǎn)坐標(biāo),若不存在,說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(四川內(nèi)江卷)數(shù)學(xué) 題型:解答題

(本小題10分)如圖11,已知二次函數(shù)y= -x2 +mx +4m的圖象與x軸交于

A(x1,0),B(x2,0)兩點(diǎn)(B點(diǎn)在A點(diǎn)的右邊),與y軸的正半軸交于點(diǎn)C,且(x1+x2) - x1x2=10.

(1)求此二次函數(shù)的解析式.

(2)寫(xiě)出B,C兩點(diǎn)的坐標(biāo)及拋物線頂點(diǎn)M的坐標(biāo);

(3)連結(jié)BM,動(dòng)點(diǎn)P在線段BM上運(yùn)動(dòng)(不含端點(diǎn)B,M),過(guò)點(diǎn)P作x軸的垂線,垂足為H,設(shè)OH的長(zhǎng)度為t,四邊形PCOH的面積為S.請(qǐng)?zhí)骄浚核倪呅蜳COH的面積S有無(wú)最大值?如果有,請(qǐng)求出這個(gè)最大值;如果沒(méi)有,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案