(本小題10分)如圖11,已知二次函數y= -x2 +mx +4m的圖象與x軸交于
A(x1,0),B(x2,0)兩點(B點在A點的右邊),與y軸的正半軸交于點C,且(x1+x2) - x1x2=10.
(1)求此二次函數的解析式.
(2)寫出B,C兩點的坐標及拋物線頂點M的坐標;
(3)連結BM,動點P在線段BM上運動(不含端點B,M),過點P作x軸的垂線,垂足為H,設OH的長度為t,四邊形PCOH的面積為S.請?zhí)骄浚核倪呅蜳COH的面積S有無最大值?如果有,請求出這個最大值;如果沒有,請說明理由.
解:(1)由根與系數的關系,得
∵(x1+x2) -x1x2=10,
∴ m + 4m =10, m=2.
∴二次函數的解析式為y = -x2 +2x +8.
(2)由-x2 +2x +8=0,解得x1= -2,x2=4.
y = -x2 +2x +8= -(x-1)2+9.
∴B,C,M的坐標分別為B(4,0),C(0,8),M(1,9).
(3)如圖,過M作MN⊥x軸于N,則ON=1,MN=9,OB=4,BN=3.
∵OH=t(1<t<4),∴BH=4-t.
由PH∥MN,可求得PH=3BH=3(4-t),
∴S=(PH+CO)·OH
=(12-3t+8)t
= -t2+10t(1<t<4).
S= -t2+10t= -(t-)2+.
∵1<<4.
∴當t=時,S有最大值,其最大值為.
【解析】略
科目:初中數學 來源: 題型:
(11·湖州)(本小題10分)
如圖,已知E、F分別是□ABCD的邊BC、AD上的點,且BE=DF。
⑴求證:四邊形AECF是平行四邊形;
⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2011-2012學年江蘇省啟東市九年級寒假作業(yè)檢測數學卷 題型:解答題
(本小題10分)
如圖,拋物線與x軸交與A(1,0),B(- 3,0)兩點,
1.(1)求該拋物線的解析式;
2.(2)拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最。咳舸嬖,求出Q點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源:2012屆北京一六三中初三上學期模擬數學卷 題型:解答題
(本小題10分)如圖, 拋物線與x軸的一個交點是A,與y軸的交點是B,且OA、OB(OA<OB)的長是方程的兩個實數根.
1.(1)求A、B兩點的坐標;
2. (2) 求出此拋物線的的解析式及頂點D的坐標;
3.(3)求出此拋物線與x軸的另一個交點C的坐標;
4.(4)在直線BC上是否存在一點P,使四邊形PDCO為梯形?若存在,求出P點坐標,若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com