【題目】如圖,在中,,,點(diǎn)在邊上,聯(lián)結(jié),將繞著點(diǎn)旋轉(zhuǎn),使得點(diǎn)與邊的中點(diǎn)重合,點(diǎn)的對(duì)應(yīng)點(diǎn)是點(diǎn),則的長(zhǎng)等于_____

【答案】

【解析】

如圖,延長(zhǎng)AB'BCE,過點(diǎn)B'B'DAB于點(diǎn)D,由勾股定理可求AC的長(zhǎng),由旋轉(zhuǎn)的性質(zhì)可求APAM,∠PAB=∠CAE,ABAB'2,通過證明△ABP∽△CBA,可得∠PAB=∠C,可得CEAE,由勾股定理可求CEBE的長(zhǎng),由相似三角形的性質(zhì)可求B'D,BD的長(zhǎng),即可求解.

如圖,延長(zhǎng)AB'BCE,過點(diǎn)B'B'DAB于點(diǎn)D

∵∠ABC90,AB2BC4,

AC

∵點(diǎn)MAC中點(diǎn),

AM,

∵將△ABP繞著點(diǎn)A旋轉(zhuǎn),使得點(diǎn)P與邊AC的中點(diǎn)M重合,

APAM,∠PAB=∠CAE,ABAB'2

AP2AB2PB2,

PB1,

,

且∠ABP=∠ABC90,

∴△ABP∽△CBA

∴∠PAB=∠C,

∴∠C=∠CAE,

CEAE

AE2AB2BE2,

CE24+(4CE2,

CEAE,

BE,

B'DBC,

∴△AB'D∽△AEB,

AD,B'D

BDAB-AD=2-=,

BB'

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過邊長(zhǎng)為1的等邊的邊上一點(diǎn),作延長(zhǎng)線上一點(diǎn),當(dāng)時(shí),連接邊于,則的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人利用撲克牌玩“10點(diǎn)游戲,游戲規(guī)則如下:

將牌面數(shù)字作為點(diǎn)數(shù),如紅桃6點(diǎn)數(shù)就是6(牌面點(diǎn)數(shù)與牌的花色無關(guān));

兩人摸牌結(jié)束時(shí),將所得牌的點(diǎn)數(shù)相加,若點(diǎn)數(shù)之和小于或等于10,此時(shí)點(diǎn)數(shù)之和就是最終點(diǎn)數(shù),若點(diǎn)數(shù)之和大于10,則最終點(diǎn)數(shù)0

游戲結(jié)束之前雙方均不知道對(duì)方點(diǎn)數(shù);

判定游戲結(jié)果的依據(jù)是:最終點(diǎn)數(shù)大的一方獲勝,最終點(diǎn)數(shù)相等時(shí)不分勝負(fù).

現(xiàn)甲、乙均各自摸了兩張牌,數(shù)字之和都是5,這時(shí)桌上還有四張背面朝上的撲克牌,牌面數(shù)字分別是4,5,6,7

1)若甲從桌上繼續(xù)摸一張撲克牌,乙不再摸牌,則甲獲勝的概率為 ;

2)若甲先從桌上繼續(xù)摸一張撲克牌,接著乙從剩下的撲克牌中摸出一張牌,然后雙方不再摸牌,請(qǐng)用樹狀圖或表格表示出這次摸牌后所有可能的結(jié)果,再列表呈現(xiàn)甲、乙的最終點(diǎn)數(shù),并求乙獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠XOY=60°,點(diǎn)A在邊OX上,OA=2.過點(diǎn)AACOY于點(diǎn)C,以AC為一邊在∠XOY內(nèi)作等邊三角形ABC,點(diǎn)PABC圍成的區(qū)域(包括各邊)內(nèi)的一點(diǎn),過點(diǎn)PPDOYOX于點(diǎn)D,作PEOXOY于點(diǎn)E.設(shè)OD=a,OE=b,則a+2b的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)過點(diǎn)A3,4),直線ACx軸交于點(diǎn)C6,0),過點(diǎn)Cx軸的垂線交反比例函數(shù)圖象于點(diǎn)B

1)求反比例函數(shù)和直線AC的解析式;

2)求△ABC的面積;

3)在平面內(nèi)有點(diǎn)D,使得以A,B,C,D四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,請(qǐng)直接寫出符合條件的所有D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線yx2+mx+n經(jīng)過點(diǎn)B6,1),C5,0),且與y軸交于點(diǎn)A

1)求拋物線的表達(dá)式及點(diǎn)A的坐標(biāo);

2)點(diǎn)Py軸右側(cè)拋物線上的一點(diǎn),過點(diǎn)PPQOA,交線段OA的延長(zhǎng)線于點(diǎn)Q,如果∠PAB45°.求證:△PQA∽△ACB

3)若點(diǎn)F是線段AB(不包含端點(diǎn))上的一點(diǎn),且點(diǎn)F關(guān)于AC的對(duì)稱點(diǎn)F′恰好在上述拋物線上,求FF′的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABO的直徑,ADBDO的弦,BCO的切線,切點(diǎn)為B,OCAD,BA、CD的延長(zhǎng)線相交于點(diǎn)E

(1)求證:DCO的切線;

(2)若AE=1,ED=3,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長(zhǎng)為1的正三角形OAP沿χ軸方向連續(xù)翻轉(zhuǎn)若干次,點(diǎn)P依次落在點(diǎn)P1,P2P3,…,P2018的位置,則點(diǎn)P2018的橫坐標(biāo)為( 。

A.2016B.2017C.2018D.2019

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價(jià)促銷的原則,使生產(chǎn)的玩具能夠及時(shí)售出,據(jù)市場(chǎng)調(diào)查:每個(gè)玩具按元銷售時(shí),每天可銷售個(gè);若銷售單價(jià)每降低元,每天可多售出個(gè).已知每個(gè)玩具的固定成本為元,問這種玩具的銷售單價(jià)為多少元時(shí),廠家每天可獲利潤(rùn)元?

查看答案和解析>>

同步練習(xí)冊(cè)答案