【題目】如圖,已知拋物線y=ax﹣2ax+3(a≠0),與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,若OB=3OA.

(1)求拋物線的解析式;

(2)連接BC,點(diǎn)P、點(diǎn)Q是第一象限的拋物線上不同的兩點(diǎn),是否存在這樣的P點(diǎn),使得恒成立?若存在,請(qǐng)求P點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)如圖2,D為拋物線的對(duì)稱軸與x軸的交點(diǎn),M為線段OC上一點(diǎn),過(guò)點(diǎn)M作直線l交拋物線于E、F兩點(diǎn),連接AE、OE、BF、DF若△AEO∽△DFB,求M點(diǎn)的坐標(biāo).

【答案】(1)y=﹣x+2x+3;(2)P;(3)(0, ).

【解析】試題分析:(1)利用韋達(dá)定理求二次函數(shù)解析式.(2)聯(lián)立一次函數(shù)和二次函數(shù)求解.(3)設(shè)EF(帶k)的函數(shù),與一元二次方程聯(lián)立,韋達(dá)定理,設(shè)而不求,利用相似求出k的關(guān)系,求出k的值,也就是求出EF函數(shù)的表達(dá)式,令x=0,求出M坐標(biāo).

試題解析:

解:設(shè)A(x10),B(x2,0)

x1、x2是關(guān)于x的方程ax2ax3=0的兩根,

x1x2=2,x1·x2=,

OB=3OA,x2=﹣3x1,x1=﹣1x2=3,a=﹣1

拋物線的解析式為y=﹣x2x3

⑵∵恒成立,最大,BC長(zhǎng)不變,只需BC邊上的高最大,

點(diǎn)P是直線BC平移后與拋物線得到的唯一公共點(diǎn),

B(3,0)、C(0,3),BC的解析式為y=﹣x3,

設(shè)BC平移后的直線為y=xb,由

消去y,得到x3xb3=0∵△=0,x1=x2=,

y=x2x3中,當(dāng)x=時(shí),y=P

延長(zhǎng)FEx軸于N, D(1,0),

∵△AEO∽△DFB,∴∠EAO=∠FDBEOA=∠FBD,

EAFD,EOFB ,

設(shè)N(n,0), ,解得:n=3,N(3,0),

,∴……①,

設(shè)EF的解析式為y=kx3k,由,

消去y整理,得:x(k﹣2)x3k﹣3=0,

……②,……③,

由①②得: , ,

代入③,得,∴ (舍),

直線EF

M(0, )

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)條件求二次函數(shù)的解析式:

(1)拋物線的頂點(diǎn)坐標(biāo)為(﹣1,﹣1),且與y軸交點(diǎn)的縱坐標(biāo)為﹣3

(2)拋物線在x軸上截得的線段長(zhǎng)為4,且頂點(diǎn)坐標(biāo)是(3,﹣2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A坐標(biāo)為(﹣4,0),ABy軸,點(diǎn)Cy軸上,一次函數(shù)y=x+3的圖象經(jīng)過(guò)點(diǎn)B、C

1)點(diǎn)C的坐標(biāo)為_____,點(diǎn)B的坐標(biāo)為_____;

2)如圖②,直線l經(jīng)過(guò)點(diǎn)C,且與直線AB交于點(diǎn)M,O'O關(guān)于直線l對(duì)稱,連接CO'并延長(zhǎng),交射線AB于點(diǎn)D

①求證:CMD是等腰三角形;

②當(dāng)CD=5時(shí),求直線l的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD中,E為對(duì)角線BD上一點(diǎn),過(guò)E點(diǎn)作EF⊥BDBCF,連接DF,GDF中點(diǎn),連接EG,CG

1)求證:EG=CG;

2)將圖△BEFB點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,如圖所示,取DF中點(diǎn)G,連接EG,CG

問(wèn)(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由;

3)將圖△BEFB點(diǎn)旋轉(zhuǎn)任意角度,如圖所示,再連接相應(yīng)的線段,問(wèn)(1)中的結(jié)論是否仍然成立?通過(guò)觀察你還能得出什么結(jié)論(均不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABBCDCBC,AE 平分∠BADDE 平分∠ADC,以下結(jié)論:①∠AED90°;②點(diǎn) E BC 的中點(diǎn);③DEBE;ADABCD;其中正確的是( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,EAD的中點(diǎn),延長(zhǎng)CB到點(diǎn)F,使,連接BE、AF.

(1)完成畫圖并證明四邊形AFBE是平行四邊形;

(2)若AB=6,AD=8,∠C=60°,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子中裝有 4 個(gè)紅球和 6 個(gè)黃球,這些球除顏色外都相同,將袋子中的球充 分搖勻后,隨機(jī)摸出一球.

1)分別求摸出紅球和摸出黃球的概率

2)為了使摸出兩種球的概率相同,再放進(jìn)去 8 個(gè)同樣的紅球或黃球,那么這 8 個(gè)球中紅球和 黃球的數(shù)量分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是甲、乙兩人從同一地點(diǎn)出發(fā)后,路程隨時(shí)間變化的圖象.

(1)此變化過(guò)程中,___________ 是自變量,___________ 是因變量.

(2)甲的速度 ___________ 乙的速度.(填“大于”、“等于”、或“小于”

(3)甲與乙 ___________ 時(shí)相遇.

(4)甲比乙先走 ___________ 小時(shí).

(5)9時(shí)甲在乙的 ___________ (填“前面”、“后面”、“相同位置”).

(6)路程為150km,甲行駛了___________ 小時(shí),乙行駛了___________ 小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣為了落實(shí)中央的強(qiáng)基惠民工程,計(jì)劃將某村的居民自來(lái)水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊(duì)先合做15,那么余下的工程由甲隊(duì)單獨(dú)完成還需5

1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?

2)已知甲隊(duì)每天的施工費(fèi)用為6500,乙隊(duì)每天的施工費(fèi)用為3500元.為了縮短工期以減少對(duì)居民用水的影響工程指揮部最終決定該工程由甲、乙隊(duì)合做來(lái)完成.則該工程施工費(fèi)用是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案