【題目】毛澤東在《沁園春·雪》中提到五位歷史名人:秦始皇、漢武帝、唐太宗、宋太祖、成吉思汗,小紅將這五位名人簡介分別寫在五張完全相同的知識卡片上.

1)小哲從中隨機(jī)抽取一張,求卡片上介紹的人物是唐太宗的概率;

2)用樹狀圖或列表法求小哲從中隨機(jī)抽取兩張,卡片上介紹的人物均是漢朝以后出生的概率.(注:唐太宗、宋太祖、成吉思汗均是漢朝以后出生)

【答案】1;(2

【解析】

1)一共有5種可能,直接求出概率即可;

2)秦始皇、漢武帝、唐太宗、宋太祖、成吉思汗分別用、、、、表示,畫出樹狀圖,然后求出概率即可.

解:(1(卡片上介紹的人物是唐太宗);

2)秦始皇、漢武帝、唐太宗、宋太祖、成吉思汗分別用、、、、表示,

畫樹狀圖如圖:

則共有20種等可能的結(jié)果,滿足條件的結(jié)果有6種,

(卡片上介紹的人物均是漢朝以后出生)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車銷售公司11月份銷售某廠家的汽車,在一定范圍內(nèi),每部汽車的進(jìn)價與銷售量有如下關(guān)系:若當(dāng)月僅售出部汽車,則該部汽車的進(jìn)價為萬元,每多售出部,所有售出的汽車的進(jìn)價均降低萬元/.月底廠家再根據(jù)銷售量返利給銷售公司:銷售量在部以內(nèi)(),每部返利萬元;銷售量在部以上,每部返利萬元.

(1)若該公司當(dāng)月售出部汽車,則每部汽車的進(jìn)價為 萬元;

(2)若汽車的售價為萬元/部,該公司計劃當(dāng)月盈利萬元,則需售出多少部汽車? (盈利=銷售利潤+返利)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知點的坐標(biāo)分別為,點軸正半軸上的一個動點,過點、、的外接圓,連結(jié)并延長交圓于點,連結(jié)、

1)求證:

2)當(dāng)時,求的長度.

3)如圖2,連結(jié),求線段的最小值及當(dāng)最小時的外接圓圓心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠MON45°,點AOM上,點BCON上,且OBOA,

1)如圖1,當(dāng)點C在點B的右側(cè)時,在ON下方作∠NCD45°,交AB的延長線于點D

①若ABBD,請直接寫出線段OACD的關(guān)系   ;

②若ABBD,判斷線段OACD的關(guān)系,并說明理由;

③若AB10BD8,OB14,則CD   

2)如圖2,當(dāng)點C在點B的左側(cè)時,在ON下方作∠NCD45°CD的反向延長線交AB于點A,在∠OAB的內(nèi)部作∠BAE45°,交ON于點E,則線段OE、EB、CB之間的數(shù)量關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,、上的兩個點,點上,且是直角三角形,的半徑為1

①請在圖1中畫出點的位置;

②當(dāng)時, ;

2)如圖2的半徑為5,外固定兩點(、三點不在同一直線上),且,上的一個動點(點不在直線上),以為鄰邊作平行四邊形,求最小值并確定此時點的位置;

3)如圖3,上的兩個點,過點作射線于點,若,,點是平面內(nèi)的一個動點,且,的中點,在點的運(yùn)動過程中,求線段長度的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小麗購買學(xué)習(xí)用品的收據(jù)如表,因污損導(dǎo)致部分?jǐn)?shù)據(jù)無法識別,根據(jù)下表,解決下列問題:

(1)小麗買了自動鉛筆、記號筆各幾支?

(2)若小麗再次購買軟皮筆記本和自動鉛筆兩種文具,共花費(fèi)15元,則有哪幾種不同的購買方案?

商品名

單價(元)

數(shù)量(個)

金額(元)

簽字筆

3

2

6

自動鉛筆

1.5

記號筆

4

軟皮筆記本

2

9

圓規(guī)

3.5

1

合計

8

28

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校有1500名學(xué)生,小明想了解全校學(xué)生每月課外閱讀書籍的數(shù)量情況,隨機(jī)抽取了部分學(xué)生,得到如統(tǒng)計圖:

1)一共抽查了多少人?

2)每月課外閱讀書籍?dāng)?shù)量是1本的學(xué)生對應(yīng)的圓心角度數(shù)是多少?

3)估計該校全體學(xué)生每月課外閱讀書籍的總量大約是多少本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點AB為反比例函數(shù)yk0,x0)上的兩個動點,以A,B為頂點構(gòu)造菱形ABCD

1)如圖1,點A,B橫坐標(biāo)分別為1,4,對角線BDx軸,菱形ABCD面積為,求k的值.

2)如圖2,當(dāng)點AB運(yùn)動至某一時刻,點C,點D恰好落在x軸和y軸正半軸上,此時∠ABC90°,求點AB的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=(xm2+2xm)(m為常數(shù))

1)求證:不論m為何值,該函數(shù)的圖象與x軸總有兩個不同的公共點;

2)當(dāng)m取什么值時,該函數(shù)的圖象關(guān)于y軸對稱?

查看答案和解析>>

同步練習(xí)冊答案