【題目】已知二次函數,
畫出二次函數的圖象,并根據圖象說明,當取何值時,圖象位于上方?
請說明經過怎樣平移函數的圖象得到函數的圖象.
【答案】當時,圖象位于軸上方函數的圖象先向下平移個單位,再向左平移個單位,得到函數的圖象
【解析】
(1)首先將二次函數化簡成:y=-(x-1)2+4則可知x=1是該圖象的對稱軸,并且當x=1時函數有最大值4,然后解方程-x2+2x+3=0,得到的解即為圖象與x軸交點的橫坐標,由此些條件即可畫出圖象.由圖象可得出圖象位于x軸上方時x的取值范圍.
(2)將函數化為y=-(x-1)2+4,要想得到y=-x2,x需加1,y需減4,在x軸方向上移動時加為向左移動,在y軸方向上移動時減為向下移動.
方程的兩個解為:,,當時有最大值,由于的系數為負數,則函數開口應向下.由此可畫圖得:
根據圖象可知:當時,圖象位于軸上方.函數的圖象先向下平移個單位,再向左平移個單位,得到函數的圖象(或向作左平移個單位,再向平移個單位).
科目:初中數學 來源: 題型:
【題目】如圖,海中有一個小島A,它的周圍15海里內有暗礁,今有貨船由西向東航行,開始在A島南偏西60° 的B處,往東航行20海里后到達該島南偏西30° 的C處后,貨船繼續(xù)向東航行,你認為貨船航行途中_____ 觸礁的危險.(填寫:“有”或“沒有”)
參考數據:sin60°=cos30°≈0.866.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店經銷一種雙肩包,已知這種雙肩包的成本價為每個30元.市場調查發(fā)現,這種雙肩包每天的銷售量y(單位:個)與銷售單價x(單位:元)有如下關系:y=-x+60(30≤x≤60).
設這種雙肩包每天的銷售利潤為w元.
(1)求w與x之間的函數解析式;
(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應定為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在中,,,.設為最長邊.當時,是直角三角形;當時,利用代數式和的大小關系,探究的形狀(按角分類).
(1)當三邊分別為6、8、9時,為______三角形;當三邊分別為6、8、11時,為______三角形.
(2)猜想,當______時,為銳角三角形;當______時,為鈍角三角形.
(3)判斷當,時,的形狀,并求出對應的的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線經過、、三點.
求拋物線的解析式;
如圖①,在拋物線的對稱軸上是否存在點,使得四邊形的周長最小?若存在,求出四邊形周長的最小值;若不存在,請說明理由.
如圖②,點是線段上一動點,連接,在線段上是否存在這樣的點,使為等腰三角形且為直角三角形?若存在,求點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是邊長為3的等邊三角形,P是AB邊上的一個動點,由A向B運動(P不與A、B重合),Q是BC延長線上一動點,與點P同時以相同的速度由C向BC延長線方向運動(Q不與C重合),
(1)當∠BPQ=90°時,求AP的長;
(2)過P作PE⊥AC于點E,連結PQ交AC于D,在點P、Q的運動過程中,線段DE的長是否發(fā)生變化?若不變,求出DE的長度;若變化,求出變化范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形OABC的頂點A在y軸的正半軸上,點C在x軸的正半軸上,反比例函數y=(k≠0)的圖象的一個分支與AB交于點D,與BC交于點E,DF⊥x軸于點F,EG⊥y軸于點G,交DF于點H.若矩形OGHF和矩形HDBE的面積分別是2和5,則k的值是( )
A. 7 B. C. 2+ D. 10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC中,∠C是最小的一個內角,過頂點B的一條直線交AC于點D,直線BD將原三角形分割成兩個等腰三角形△ABD和△BCD,△ABD中BD=AD,請?zhí)骄俊?/span>A與∠C的數量關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com