(2012•相城區(qū)一模)已知:Rt△OAB在直角坐標(biāo)系中的位置如圖所示,P(3,4)為OB的中點(diǎn),點(diǎn)C為折線OAB上的動(dòng)點(diǎn),線段PC把Rt△OAB分割成兩部分,若分割得到的三角形與Rt△OAB相似,則符合條件的C點(diǎn)有
3
3
個(gè).
分析:按照公共銳角進(jìn)行分類,可以分為兩種情況:當(dāng)∠BOA為公共銳角時(shí),只存在∠PCO為直角的情況;當(dāng)∠B為公共銳角時(shí),存在∠PCB和∠BPC為直角兩種情況.如圖,C1(3,0),C2(6,4),C3(6,
7
4
).
解答:解:過P作PC1⊥OA,垂足是C1,
則△OC1P∽△OAB.
點(diǎn)C1坐標(biāo)是(3,0).(2分)
過P作PC2⊥AB,垂足是C2
則△PC2B∽△OAB.
點(diǎn)C2坐標(biāo)是(6,4).(4分)
過P作PC3⊥OB,垂足是P(如圖),
則△C3PB∽△OAB,
所以BC3:BO=BP:BA.(6分)
易知OB=10,BP=5,BA=8,
所以BC3=
25
4
,AC3=8-
25
4
=
7
4
.(8分)
所以C3(6,
7
4
).(9分)
符合要求的點(diǎn)C有3個(gè).
故答案為3.
點(diǎn)評(píng):本題考查了相似三角形的性質(zhì).此題實(shí)質(zhì)上是畫直角三角形OAB的相似三角形,只不過所畫的相似三角形點(diǎn)P已經(jīng)確定了,所以要根據(jù)網(wǎng)格找出三邊的長,再利用對(duì)應(yīng)邊的比相等,畫出相似三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•相城區(qū)一模)如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)M(-2,-1),且P(-1,-2)為雙曲線上的一點(diǎn).
(1)求出正比例函數(shù)和反比例函數(shù)的關(guān)系式;
(2)觀察圖象,寫出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;
(3)若點(diǎn)Q在第一象限中的雙曲線上運(yùn)動(dòng),作以O(shè)P、OQ為鄰邊的平行四邊形OPCQ,求平行四邊形OPCQ周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•相城區(qū)一模)直線y=-2x+5分別與x軸,y軸交于點(diǎn)C、D,與反比例函數(shù)y=
3
x
的圖象交于點(diǎn)A、B.過點(diǎn)A作AE⊥y軸于點(diǎn)E,過點(diǎn)B作BF⊥x軸于點(diǎn)F,連接EF,下列結(jié)論:①AD=BC;②EF∥AB;③四邊形AEFC是平行四邊形;④S△AOD=S△BOC.其中正確的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•相城區(qū)一模)計(jì)算:2-1-tan60°+(
5
-1)0+|-
3
|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•相城區(qū)一模)拋物線y=x2-3x+2與y軸交點(diǎn)、與x軸交點(diǎn)、及頂點(diǎn)的坐標(biāo)連接而成的四邊形的面積是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案