【題目】已知二次函數(shù)y=x2+(a﹣5)x+5.

(1)該拋物線與y軸交點的坐標為   ;

(2)當a=﹣1時,求該拋物線與x軸的交點坐標;

(3)已知兩點A(2,0)、B(3,0),拋物線y=x2+(a﹣5)x+5與線段AB恰有一個交點求a的取值范圍.

【答案】(1)(0,5);(2)(1,0),(5,0);(3)≤a<a=﹣2+5,

【解析】

(1)當x=0時,y=5.即拋物線與y軸的交點坐標為(0,5)

(2)由題意可得拋物線解析式,當y=0時,可求拋物線與x軸的交點坐標.

(3)分拋物線的頂點在線段AB上,拋物線與x軸的其中一個交點在線段AB上兩種情況討論,列不等式組可求a的取值范圍.

1)當x=0時,y=5.即拋物線與y軸的交點坐標為(0,5

2)當a=-1時,拋物線解析式為y=x2-6x+5

y=0時,0=x2-6x+5

解得:x1=1,x2=5

∴拋物線與x軸的交點坐標為(1,0),(5,0

3)①∵拋物線y=x2+a-5x+5與線段AB恰有一個交點

∴△=a-52-20=0

a=±2+5

2≤-≤3

-1≤a≤1

a=-2+5

②∵拋物線y=x2+a-5x+5與線段AB恰有一個交點

解得:≤a 或無解

綜上所述:≤aa=-2+5.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某市有一塊長為(3a+b)米、寬為(2a+b)米的長方形地塊,中間是邊長為(a+b)米的正方形,規(guī)劃部門計劃將在中間的正方形修建一座雕像,四周的陰影部分進行綠化.

(1)綠化的面積是多少平方米?(用含字母a、b的式子表示)

(2)求出當a=10,b=12時的綠化面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的頂點,與正方形的頂點,同在一段拋物線上,且拋物線的頂點同時落在軸上,正方形邊同時落在軸上,若正方形的邊長為,則正方形的邊長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次消防演習中,消防員架起一架25米長的云梯,如圖斜靠在一面墻上,梯子底端離墻7米.
1)求這個梯子的頂端距地面有多高?
2)如果消防員接到命令,要求梯子的頂端下降4米(云梯長度不變),那么云梯的底部在水平方向應(yīng)滑動多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由于霧霾天氣持續(xù)籠罩某地區(qū),口罩市場出現(xiàn)熱賣.某商店用8000元購進甲、乙兩種口罩,銷售完后共獲利2800元,其進價和售價如下表:

甲種口罩

乙種口罩

進價(元/袋)

20

25

售價(元/袋)

26

35

1)求該商店購進甲、乙兩種口罩各多少袋?

2)該商店第二次仍以原價購進甲、乙兩種口罩,購進乙種口罩袋數(shù)不變,而購進甲種口罩袋數(shù)是第一次的2倍,甲種口罩按原售價出售,而乙種口罩讓利銷售.若兩種口罩銷售完畢,要使第二次銷售活動獲利不少于3680元,則乙種口罩最低售價為每袋多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=x2(m﹣1)x﹣m(m>0)與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,且OB=3OA.

(1)求該拋物線的函數(shù)表達式;

(2)動點D在線段BC下方的拋物線上.

①連接AC、BC,過點Dx軸的垂線,垂足為E,交BC于點F.過點FFGAC,垂足為G.設(shè)點D的橫坐標為t,線段FG的長為d,用含t的代數(shù)式表示d;

②過點DDHBC,垂足為H,連接CD.是否存在點D,使得△CDH中的一個角恰好等于∠ABC2倍?如果存在,求出點D的橫坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知A1,A2,A3,…Anx軸上的點,且OA1=A1A2=A2A3=A3A4=…=An-1An=1,分別過點A1,A2,A3,…An′x軸的垂線交二次函數(shù)(x>0)的圖象于點P1,P2,P3,…Pn,若記OA1P1的面積為S1,過點P1P1B1A2P2于點B1,記P1B1P2的面積為S2,過點P2P2B2A3P3于點B2,記P2B2P3的面積為S3,…依次進行下去,最后記Pn-1Bn-1Pn(n>1)的面積為Sn,則Sn=( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對角線AC將正方形ABCD分成兩個等腰三角形,點E,F將對角線AC三等分,且AC15,點P在正方形的邊上,則滿足PE+PF5的點P的個數(shù)是( 。

A.0B.4C.8D.16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,上一點,以為圓心為半徑的圓與交于點,與交于點,連接、、,且

求證:的切線;

,求的半徑.

查看答案和解析>>

同步練習冊答案