分析 (1)如圖1,根據圖形、已知條件推知∠BAD+∠MAE=∠DAM+∠EAC=45°,所以∠MAE=∠EAC,即AE平分∠MAC;
(2)成立.小穎的方法是應用折疊對稱的性質和SAS得到△AEF≌△AEC,在Rt△DFE中應用勾股定理而證明;小亮的方法是將△ABD繞點A逆時針旋轉90°得到△ACG,根據旋轉的性質用SAS得到△ADE≌△AGE,從而在Rt△CEG中應用勾股定理而證明.
(3)成立.小穎的方法是應用折疊對稱的性質和SAS得到△AEF≌△AEC,在Rt△DFE中應用勾股定理而證明;小亮的方法是將△ABD繞點A逆時針旋轉90°得到△ACG,根據旋轉的性質用SAS得到△ACE≌△ACG,從而在Rt△CEG中應用勾股定理而證明.當135°<α<180°時,等量關系BD2+CE2=DE2仍然成立.可以根據小穎和小亮的方法進行證明即可.
解答 (1)證明:如圖1,∵∠BAC=90°,
∴∠BAD+∠DAM+∠MAE+∠EAC=90°.
∵∠DAE=45°,
∴∠BAD+∠EAC=45°.
∵∠BAD=∠DAM,
∴∠BAD+∠EAC=∠DAM+∠EAC=45°,
∴∠BAD+∠MAE=∠DAM+∠EAC,
∴∠MAE=∠EAC,即AE平分∠MAC;
(2)選擇小穎的方法.
證明:如圖2,連接EF.
由折疊可知,∠BAD=∠FAD,AB=AF,BD=DF,
∵∠BAD=∠FAD,
∴由(1)可知,∠CAE=∠FAE.
在△AEF和△AEC中,
$\left\{\begin{array}{l}{AF=AC}\\{∠FAE=∠CAE}\\{AE=AE}\end{array}\right.$,
∴△AEF≌△AEC(SAS),
∴CE=FE,∠AFE=∠C=45°.
∴∠DFE=∠AFD+∠AFE=90°.
在Rt△DFE中,DF2+FE2=DE2,
∴BD2+CE2=DE2.
選擇小亮的方法,
證明:∵將△ABD繞點A逆時針旋轉90°得到△ACG,
∴△ADB≌△AGC,
∴∠B=∠ACG=45°,AD=AG,BD=CG,
∵∠BAC=∠DAG=90°,∠DAE=45°,
∴∠EAG=45°,
在△DAE和△GAE中,
$\left\{\begin{array}{l}{AD=AG}\\{∠DAE=∠GAE}\\{AE=AE}\end{array}\right.$,
∴△DAE≌△GAE(SAS),
∴DE=EG,
∵∠ACB=90°,
∴∠ECG=∠ACB+∠ACG=45°+45°=90°μ,
∴△ECG是直角三角形,
∴CG2+CE2=EG2,
即BD2+CE2=DE2;
(3)當135°<α<180°時,等量關系BD2+CE2=DE2仍然成立.證明如下:
如圖4,按小穎的方法作圖,設AB與EF相交于點G.
∵將△ABD沿AD所在的直線對折得到△ADF,
∴AF=AB,∠AFD=∠ABD=135°,∠BAD=∠FAD.
又∵AC=AB,∴AF=AC.
又∵∠CAE=90°-∠BAE=90°-(45°-∠BAD)=45°+∠BAD=45°+∠FAD=∠FAE.
∴∠CAE=∠FAE.
在△AEF和△AEC中,
∵$\left\{\begin{array}{l}{AF=AC}\\{∠FAE=∠CAE}\\{AE=AE}\end{array}\right.$,
∴△AEF≌△AEC(SAS),
∴CE=FE,∠AFE=∠C=45°.
∴∠DFE=∠AFD-∠AFE=∠135°-∠C=135°-45°=90°.
∴∠DFE=90°.
在Rt△DFE中,DF2+FE2=DE2,
∴BD2+CE2=DE2
點評 本題考查了幾何變換綜合性題目,用到的知識點有角平分線的定義,等腰直角三角形的性質,旋轉的性質,折疊對稱的性質,全等三角形的判定和性質等,題目的綜合性較強,難度較大,正確做出圖形的輔助線是解題的關鍵.
科目:初中數學 來源: 題型:選擇題
A. | 2≤k≤3 | B. | 2≤k≤4 | C. | 3≤k≤4 | D. | 2≤k≤3.5 |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com