【題目】 如圖,在直角坐標(biāo)系中,已知點A(-3,0),B(0,4),AB=5,對△OAB連續(xù)做旋轉(zhuǎn)變換,依次得到△1,△2,△3,△4,…,則△2017的直角頂點的坐標(biāo)為______.
【答案】(8064,0)
【解析】
得到△ABC的周長為12,根據(jù)旋轉(zhuǎn)變換可得△OAB的旋轉(zhuǎn)變換為每3次一個循環(huán),由于2017÷3=672…1,于是可判斷三角形2017與三角形1的狀態(tài)一樣,然后計算672×12即可得到三角形2017的直角頂點坐標(biāo).
解:∵A(-3,0),B(0,4),
∴OA=3,OB=4,
∵AB=5,
∴△ABC的周長=3+4+5=12,
∵△OAB每連續(xù)3次后與原來的狀態(tài)一樣,
∵2017÷3=672…1,
∴△2017的直角頂點是第672個循環(huán)組后第一個三角形的直角頂點,
∴三角形2017的直角頂點的橫坐標(biāo)=672×12=8064,
∴三角形2017的直角頂點坐標(biāo)為(8064,0),
故答案為:(8064,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點是上的動點(不與,重合),過點作交
于點.以為直徑作,并在內(nèi)作內(nèi)接矩形,令.
用含的代數(shù)式表示的面積;
當(dāng)為何值時,與直線相切?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,點D在邊AC上且BD平分∠ABC,設(shè)CD=x.
(1)求證:△ABC∽△BCD;
(2)求x的值;
(3)求cos36°-cos72°的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了節(jié)約生活用水,計劃制定每位居民統(tǒng)一的月用水量標(biāo)準(zhǔn),然后根據(jù)標(biāo)準(zhǔn),實行分段收費.為此,對居民上年度的月均用水量進行了抽樣調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了上年度月均用水量的頻數(shù)分布直方圖(圖中分組含最低值,不含最高值),請根據(jù)圖中信息解答下列問題:
(1)本次調(diào)查的居民人數(shù)為__________人;
(2)本次調(diào)查的居民月均用水量的中位數(shù)落在頻數(shù)分布直方圖中的第__________小組內(nèi)(從左至右數(shù));
(3)當(dāng)?shù)卣M?/span>85%左右居民的月均用水量低于制定的月用水量標(biāo)準(zhǔn),根據(jù)上述調(diào)查結(jié)果,你認為月用水量標(biāo)準(zhǔn)(取整數(shù))定為多少噸時較為合適?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:如果兩個一次函數(shù)的一次項系數(shù)和常數(shù)項互換,即y=kx+b和y=bx+k(其中|k|≠|(zhì)b|),稱這樣的兩個一次函數(shù)為互助一次函數(shù),例如和就是互助一次函數(shù).根據(jù)規(guī)定解答下列問題:
(1)填空:一次函數(shù)與它的互助一次函數(shù)的交點坐標(biāo)為______
(2)若兩個一次函數(shù)y=(k-b)x – k - 2b與是互助一次函數(shù),求兩函數(shù)圖象與y軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:分別與x軸、y軸交于A、B兩點,點C為x軸上任意一點,直線l2:經(jīng)過點C,且與直線l1交于點D,與y軸交于點E,連結(jié)AE.
(1)當(dāng)點C的坐標(biāo)為時,①求直線l2的函數(shù)表達式;②求證:AE平分;
(2)問:是否存在點C,使是以CE為一腰的等腰三角形?若存在,直接寫出點C的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘漁船正以60海里/小時的速度向正東方向航行,在A處測得島礁P在東北方向上,繼續(xù)航行1.5小時后到達B處,此時測得島礁P在北偏東30°方向,同時測得島礁P正東方向上的避風(fēng)港M在北偏東60°方向.為了在臺風(fēng)到來之前用最短時間到達M處,漁船立刻加速以75海里/小時的速度繼續(xù)航行_____小時即可到達.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,
(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,AB∥CD,∠A=35°,∠C=40°,求∠APC的度數(shù).(提示:作PE∥AB).
(2)如圖2,AB∥DC,當(dāng)點P在線段BD上運動時,∠BAP=∠α,∠DCP=∠β,求∠CPA與∠α,∠β之間的數(shù)量關(guān)系,并說明理由.
(3)在(2)的條件下,如果點P在射線DM上運動,請你直接寫出∠CPA與∠α,∠β之間的數(shù)量關(guān)系______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com