某零件制造車間有工人20名,已知每名工人每天可制造甲種零件6個或乙種零件5個,且每制造一個甲種零件可獲利潤150元,每制造一個乙種零件可獲利260元,在這20名工人中,車間每天安排x名工人制造甲種零件,其余工人制造乙種零件.

(1)請寫出此車間每天所獲利潤y(元)與x(人)之間的函數(shù)關(guān)系式.

(2)若使車間每天利潤不低于24000元,你認為至少要派多少名工人去制造乙種零件才合適?

答案:
解析:

  答:至少要派15名工人去制造乙零件才合適.

  (1)依題意,得y=150×6x+260×5(20-x)=-400x+26000(0≤x≤20).

  (2)由題意,有y=-400x+26000≥24000.

  解得x≤5,此時20-x=20-5=15(名).


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

24、某零件制造車間有工人20名,已知每名工人可制造甲種零件6個或乙種零件5個,且每制造一個甲種零件可獲利潤150元,每制造一個乙種零件可獲利潤260元.在這20名工人中,車間每天安排x名工人制造甲種零件,其余工人制造乙種零件.
(1)請寫出此車間每天所獲利潤y(元)與x(人)之間的關(guān)系式.
(2)若此車間某天安排15人生產(chǎn)甲種零件,則這天車間獲利潤多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某零件制造車間有工人20名,已知每名工人每天可制造甲種零件6個或乙種零件5個,且每制造一個甲種零件,可獲利潤150元,每制造一個乙種零件可獲利潤260元,在這20名工人中,車間每天安排x名工人制造甲種零件,其余工人制造乙種零件,且生產(chǎn)乙種零件的個數(shù)不超過甲種零件個數(shù)的一半.
(1)請寫出此車間每天所獲利潤y(元)與x(人)之間的函數(shù)關(guān)系式;
(2)求自變量x的取值范圍;
(3)怎樣安排生產(chǎn)每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本小題滿分8分)某零件制造車間有工人20名,已知每名工人每天可制造甲種零件6個或乙種零件5個,且每制造一個甲種零件,可獲利潤150元,每制造一個乙種零件可獲利潤260元,在這20名工人中,車間每天安排x名工人制造甲種零件,其余工人制造乙種零件,且生產(chǎn)乙種零件的個數(shù)不超過甲種零件個數(shù)的一半.

⑴請寫出此車間每天所獲利潤y(元)與x(人)之間的函數(shù)關(guān)系式;

⑵求自變量x的取值范圍;

⑶怎樣安排生產(chǎn)每天獲得的利潤最大,最大利潤是多少?

 

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本小題滿分8分)某零件制造車間有工人20名,已知每名工人每天可制造甲種零件6個或乙種零件5個,且每制造一個甲種零件,可獲利潤150元,每制造一個乙種零件可獲利潤260元,在這20名工人中,車間每天安排x名工人制造甲種零件,其余工人制造乙種零件,且生產(chǎn)乙種零件的個數(shù)不超過甲種零件個數(shù)的一半.
⑴請寫出此車間每天所獲利潤y(元)與x(人)之間的函數(shù)關(guān)系式;
⑵求自變量x的取值范圍;
⑶怎樣安排生產(chǎn)每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011年黃石市八年級上學期期末考試數(shù)學卷1 題型:選擇題

(本小題滿分8分)某零件制造車間有工人20名,已知每名工人每天可制造甲種零件6個或乙種零件5個,且每制造一個甲種零件,可獲利潤150元,每制造一個乙種零件可獲利潤260元,在這20名工人中,車間每天安排x名工人制造甲種零件,其余工人制造乙種零件,且生產(chǎn)乙種零件的個數(shù)不超過甲種零件個數(shù)的一半.

⑴請寫出此車間每天所獲利潤y(元)與x(人)之間的函數(shù)關(guān)系式;

⑵求自變量x的取值范圍;

⑶怎樣安排生產(chǎn)每天獲得的利潤最大,最大利潤是多少?

 

 

查看答案和解析>>

同步練習冊答案