【題目】(本題滿分6分)如圖,已知ABDC,AE平分∠BAD,CDAE相交于點F,∠CFE=∠E.試說明ADBC.完成推理過程:

ABDC(已知)

∴∠1=∠CFE   

AE平分∠BAD(已知)

∴∠1= ∠2 (角平分線的定義)

∵∠CFE=∠E(已知)∴∠2=   (等量代換)

ADBC   

【答案】兩直線平行,同位角相等;∠E;內錯角相等,兩直線平行.

【解析】試題分析:由ABDC平行,利用兩直線平行同位角相等得到一對角相等,再由AE為角平分線,得到一對角相等,再根據(jù)已知角相等,等量代換得到一對內錯角相等,利用內錯角相等兩直線平行即可得證.

試題解析: 證明:∵AB∥DC(已知)

∴∠1=∠CFE兩直線平行,同位角相等

∵AE平分∠BAD(已知)

∴∠1=∠2(角平分線的定義)

∵∠CFE=∠E(已知)

∴∠2=∠E(等量代換)

∴AD∥BC內錯角相等,兩直線平行).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以△ABC的一邊AB為直徑的半圓與其它兩邊ACBC的交點分別為D、E,且=

1)試判斷△ABC的形狀,并說明理由.

2)已知半圓的半徑為5,BC=12,求sin∠ABD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸、軸分別相交于點A和B.

(1)直接寫出坐標:點A ,點B ;

2以線段AB為一邊在第一象限內作ABCD,其頂點D(, )在雙曲線 ()上.

①求證:四邊形ABCD是正方形;

②試探索:將正方形ABCD沿軸向左平移多少個單位長度時,點C恰好落在雙曲線 ()上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,網(wǎng)格中每個小正方形邊長為1ABC的頂點都在格點上.將ABC向左平移2格,再向上平移3格,得到ABC

1)請在圖中畫出平移后的ABC;

2)畫出平移后的ABC的中線BD

3)若連接BBCC,則這兩條線段的關系是________

(4)ABC在整個平移過程中線段AB 掃過的面積為________

(5)若ABCABE面積相等,則圖中滿足條件且異于點C的格點E共有______

(注:格點指網(wǎng)格線的交點)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x2+x=2,則(x2+2x)﹣(x+1)值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個三角形的兩邊長分別為3 cm7 cm,則此三角形的第三邊的長可能是( )

A. 3 cm B. 4 cm C. 7 cm D. 11 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的周長為8m,高AE的長為cm,則對角線BD的長為( )

A.2cm B.3cm C.cm D.2cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下列各組線段為邊,能組成三角形的是(

A. 3cm4cm8cm

B. 8cm7cm,15cm

C. 5cm,5cm,11cm

D. 11cm,12cm13crn

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( )
A.a2+a5=a7
B.(﹣a23=a6
C.a2﹣1=(a+1)(a﹣1)
D.(a+b)2=a2+b2

查看答案和解析>>

同步練習冊答案