【題目】超市將某品牌的洗滌液按照進價提高50%后標價,再打八折銷售,仍可獲利30元.則這種商品的進價是_____元.

【答案】150.

【解析】

設這種商品的進價是x元,根據(jù)售價-進價=利潤即可得出關于x的一元一次方程,解之即可得出結論.

.解:設這種商品的進價是x元,

根據(jù)題意得:0.8×(1+50%)x﹣x=30,

解得:x=150.

故答案為:150.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有下列判斷:①∠A與∠1是同位角;②∠A與∠B是同旁內角;③∠4與∠1是內錯角;④∠1與∠3是同位角. 其中正確的是(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若(m+3)x|m|2+5=0是關于x的一元一次方程,則m=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1)|﹣2|﹣(2﹣π)0++(﹣2)3
(2)(﹣2x32(﹣x2)÷[(﹣x)2]3
(3)(x+y)2(x﹣y)2
(4)(x﹣2y+3z)(x+2y﹣3z)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=30°,點D是△ABC內一點,DB=DC,∠DCB=30°,點E是BD延長線上一點,AE=AB.

(1)求∠ADE的度數(shù);

(2)求證:DE=AD+DC;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,MBC邊(不含端點B、C)上任意一點,PBC延長線上一點,N∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME

正方形ABCD中,∠B=∠BCD=90°AB=BC

∴∠NMC=180°—∠AMN—∠AMB

=180°—∠B—∠AMB

=∠MAB=∠MAE

(下面請你完成余下的證明過程)

2)若將(1)中的正方形ABCD”改為正三角形ABC”(如圖2,N∠ACP的平分線上一點,則當∠AMN=60°時,結論AM=MN是否還成立?請說明理由.

3)若將(1)中的正方形ABCD”改為邊形ABCD…X”,請你作出猜想:當∠AMN=°時,結論AM=MN仍然成立.(直接寫出答案,不需要證明)

1 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】你能求(x﹣1)(x99+x98+x97+…+x+1)的值嗎?
遇到這樣的問題,我們可以先思考一下,從簡單的情形入手.先計算下列各式的值:
(1)(x﹣1)(x+1)=;
(2)(x﹣1)(x2+x+1)=;
(3)(x﹣1)(x3+x2+x+1)=;
由此我們可以得到(x﹣1)(x99+x98+…+x+1)=;
請你利用上面的結論,完成下面兩題的計算:
(1)299+298+…+2+1;
(2)(﹣3)50+(﹣3)49+…+(﹣3)+1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系xOy中,點B(﹣2,2),過反比例函數(shù)y=(x0,常數(shù)k0)圖象上一點A(﹣,m)作y軸的平行線交直線l:y=x+2于點C,且AC=AB.

(1)分別求出m、k的值,并寫出這個反比例函數(shù)解析式;

(2)發(fā)現(xiàn):過函數(shù)y=(x0)圖象上任意一點P,作y軸的平行線交直線l于點D,請直接寫出你發(fā)現(xiàn)的PB,PD的數(shù)量關系 ;

應用:①如圖2,連接BD,當PBD是等邊三角形時,求此時點P的坐標;

②如圖3,分別過點P、D作y的垂線交y軸于點E、F,問是否存在點P,使得矩形PEFD的周長取得最小值?若存在,請求出此時點P的坐標及矩形PEFD的周長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某同學5次數(shù)學小測驗的成績分別為(單位:分):90,85,9095,100,則該同學這5次成績的眾數(shù)是( 。

A.90 B.85 C.95 D.100

查看答案和解析>>

同步練習冊答案