已知拋物線的頂點(diǎn)在坐標(biāo)軸上.

(1)求的值;

(2)時,拋物線向下平移個單位后與拋物線關(guān)于軸對稱,且過點(diǎn),求的函數(shù)關(guān)系式;

(3)時,拋物線的頂點(diǎn)為,且過點(diǎn).問在直線 上是否存在一點(diǎn)使得△的周長最小,如果存在,求出點(diǎn)的坐標(biāo), 如果不存在,請說明理由.


解:當(dāng)拋物線的頂點(diǎn)在軸上時

解得                     ………………………………1分

當(dāng)拋物線的頂點(diǎn)在軸上

                              ………………………………2分

綜上

,,             …………………………………3分

∴拋物線

過點(diǎn)

,即 ……………………………………4分

解得(由題意,舍去)∴                           

∴拋物線. ………………………………………………5分

【解析】略


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,一大橋有一段拋物線型的拱梁,拋物線的表達(dá)式為y=ax2+bx+c,小王騎自行車從O勻速沿直線到拱梁一端A,再勻速通過拱梁部分的橋面AC,小王從O到A用了2秒,當(dāng)小王騎自行車行駛10秒時和20秒時拱梁的高度相同,則小強(qiáng)騎自行車通過拱梁部分的橋面AC共需         秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在邊長為3的正方形ABCD中,點(diǎn)M在邊AD上,且AM=AD,延長MD至點(diǎn)E,使ME=MB,以DE為邊作正方形DEFG,點(diǎn)G在邊CD上,則DG 的長為      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


平面內(nèi)有四個點(diǎn)A、B、C、D,其中∠ABC=1500,∠ADC=300,AB=BC=1,則滿足題意的BD長的最大值是         。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長。

小萍同學(xué)靈活運(yùn)用了軸對稱知識,將圖形進(jìn)行翻折變換,巧妙地解答了此題。

(1)分別以AB、AC為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D、C點(diǎn)的對稱點(diǎn)分別為E、F,延長EB、FC相交于G點(diǎn),求證:四邊形AEGF是正方形;

(2)設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,求出x的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


定義:如果一個y與x的函數(shù)圖象經(jīng)過平移后能與某反比例函數(shù)的圖象重合,那么稱這個函數(shù)是y與x的“反比例平移函數(shù)”.例如:的圖象向左平移2個單位,再向下平移1個單位得到的圖象,則是y與x的“反比例平移函數(shù)”.

(1)若矩形的兩邊分別是2cm、3cm,當(dāng)這兩邊分別增加x(cm)、y(cm)后,得到的新矩形的面積為8cm2,求y與x的函數(shù)表達(dá)式,并判斷這個函數(shù)是否為“反比例平移函數(shù)”.

(2)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(9,0)、(0,3).點(diǎn)D是OA的中點(diǎn),連接OB、CD交于點(diǎn)E,“反比例平移函數(shù)”的圖象經(jīng)過B、E兩點(diǎn).則這個“反比例平移函數(shù)”的表達(dá)式為            ;這個“反比例平移函數(shù)”的圖象經(jīng)過適當(dāng)?shù)淖儞Q與某一個反比例函數(shù)的圖象重合,請寫出這個反比例函數(shù)的表達(dá)式.

(3)在(2)的條件下,已知過線段BE中點(diǎn)的一條直線l交這個“反比例平移函數(shù)”圖象于P、Q兩點(diǎn)(P在Q的右側(cè)),若B、E、P、Q為頂點(diǎn)組成的四邊形面積為16,請求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖所示,半徑為1的圓和邊長為1的正方形在同一水平線上,圓沿該水平線從左向右勻速穿過正方形,設(shè)穿過時間為t,正方形除去圓部分的面積為S(陰影部分),則S與t的大致圖象為【    】

A.       B.      C.8      D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在△ABC中,∠A=90°,AB=2cm,AC=4cm.動點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以1cm/s的速度向點(diǎn)B運(yùn)動,動點(diǎn)Q從點(diǎn)B同時出發(fā),沿BA方向以1cm/s的速度向點(diǎn)A運(yùn)動.當(dāng)點(diǎn)P到達(dá)點(diǎn)B時,P,Q兩點(diǎn)同時停止運(yùn)動,以AP為一邊向上作正方形APDE,過點(diǎn)Q作QF∥BC,交AC于點(diǎn)F.設(shè)點(diǎn)P的運(yùn)動時間為ts,正方形和梯形重合部分的面積為Scm2

(1)當(dāng)t= _________ s時,點(diǎn)P與點(diǎn)Q重合;

(2)當(dāng)t= _________ s時,點(diǎn)D在QF上;

(3)當(dāng)點(diǎn)P在Q,B兩點(diǎn)之間(不包括Q,B兩點(diǎn))時,求S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 如圖1,在ABCD中,AH⊥DC,垂足為H,AB=,AD=7,AH=. 現(xiàn)有兩個動點(diǎn)E、F同時從點(diǎn)A出發(fā),分別以每秒1個單位長度、每秒3個單位長度的速度沿射線AC方向勻速運(yùn)動. 在點(diǎn)E、F運(yùn)動過程中,以EF為邊作等邊△EFG,使△EFG與△ABC在射線AC的同側(cè),當(dāng)點(diǎn)E運(yùn)動到點(diǎn)C時,E、F兩點(diǎn)同時停止運(yùn)動. 設(shè)運(yùn)轉(zhuǎn)時間為t秒.

(1)求線段AC的長;

(2)在整個運(yùn)動過程中,設(shè)等邊△EFG與△ABC重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量t的取值范圍;

(3)當(dāng)?shù)冗叀鱁FG的頂點(diǎn)E到達(dá)點(diǎn)C時,如圖2,將△EFG繞著點(diǎn)C旋轉(zhuǎn)一個角度. 在旋轉(zhuǎn)過程中,點(diǎn)E與點(diǎn)C重合,F(xiàn)的對應(yīng)點(diǎn)為F′,G的對應(yīng)點(diǎn)為G′. 設(shè)直線F′G′與射線DC、射線AC分別相交于M、N兩點(diǎn).試問:是否存在點(diǎn)M、N,使得△CMN是以∠MCN為底角的等腰三角形?若存在,請求出線段CM的長度;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案