【題目】關(guān)于的一元二次方程有兩個不相等的實數(shù)根.

1)求的取值范圍.

2)是否存在實數(shù),使方程的兩個實數(shù)根互為相反數(shù)?若存在,求出的值;若不存在,說明理由.

【答案】1;2)不存在實數(shù),使方程的兩個實數(shù)根互為相反數(shù).

【解析】

1)由二次項系數(shù)非零及根的判別式0,即可得出關(guān)于k的一元一次不等式組,解之即可得出k的取值范圍;
2)設(shè)方程kx2+2k-2x+k=0的兩根分別為x1、x2,利用根與系數(shù)的關(guān)系結(jié)合x1、x2互為相反數(shù),可得出關(guān)于k的方程,解之即可求出k值,再由(1)中k的取值范圍,即可得出不存在符合條件的k值.

1)∵關(guān)于的一元二次方程有兩個不相等的實數(shù)根,

,

解得:.

的取值范圍為.

2)∵方程的兩個實數(shù)根互為相反數(shù),

,

,

∴不存在實數(shù),使方程的兩個實數(shù)根互為相反數(shù).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】雅安地震牽動著全國人民的心,某單位開展了“一方有難,八方支援”賑災捐款活動.第一天收到捐款10 000元,第三天收到捐款12 100元.

(1)如果第二天、第三天收到捐款的增長率相同,求捐款增長率;

(2)按照(1)中收到捐款的增長速度,第四天該單位能收到多少捐款?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,對于半徑為和點,給出如下定義:

,則稱近外點”.

1)當的半徑為2時,點,,,中,近外點__________;

2)若點近外點,求的半徑的取值范圍;

3)當的半徑為2時,直線軸交于點,與軸交于點,若線段上存在近外點,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A的坐標是(1,3),將點A繞原點O順時針旋轉(zhuǎn)90°得到點A,則點A的坐標是( )

A. 3,1 B. (3,-1 C. 1,3 D. (1,-3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

已知,在RtABC中,ACBC,∠C90°DAB邊的中點,∠EDF90°,∠EDF繞點D旋轉(zhuǎn),它的兩邊分別交AC,CB(或它們的延長線)于點E,F

1)(問題發(fā)現(xiàn))

如圖1,當∠EDF繞點D旋轉(zhuǎn)到DEAC于點E時(如圖1),

①證明:△ADE≌△BDF

②猜想:SDEF+SCEF   SABC

2)(類比探究)

如圖2,當∠EDF繞點D旋轉(zhuǎn)到DEAC不垂直時,且點E在線段AC上,試判斷SDEF+SCEFSABC的關(guān)系,并給予證明.

3)(拓展延伸)

如圖3,當點E在線段AC的延長線上時,此時問題(2)中的結(jié)論是否成立?若成立,請給予證明;若不成立,SDEF,SCEF,SABC又有怎樣的關(guān)系?(寫出你的猜想,不需證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC10,BD9,則△ADE的周長為( 。

A. 19B. 20C. 27D. 30

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等邊三角形,旋轉(zhuǎn)后能與重合.

1)旋轉(zhuǎn)中心是哪一點?

2)旋轉(zhuǎn)角度是多少度?

3)連結(jié)后,是什么三角形?簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小東設(shè)計的作矩形的尺規(guī)作圖過程,已知:

求作:矩形

作法:如圖,

①作線段的垂直平分線角交于點;

②連接并延長,在延長線上截取

③連接

所以四邊形即為所求作的矩形

根據(jù)小東設(shè)計的尺規(guī)作圖過程

1)使用直尺和圓規(guī),補全圖形:(保留作圖痕跡)

2)完成下邊的證明:

證明: ,,

四邊形是平行四邊形( )(填推理的依據(jù))

四邊形是矩形( )(填推理的依據(jù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為慶祝新中國成立70周年,河南省實驗中學開展了以我和我親愛的祖國為主題的快閃活動,九年級準備從兩名男生和兩名女生中選出兩名同學領(lǐng)唱,如果每一位同學被選中的機會均等,則選出的恰為一位男生一位女生的概率是_____

查看答案和解析>>

同步練習冊答案