【題目】(1)同題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度數(shù).
小明想到一種方法,但是沒有解答完:
如圖2,過P作PE∥AB,∴∠APE+∠PAB=180°.
∴∠APE=180°-∠PAB=180°-130°=50°.
∵AB∥CD.∴PE∥CD.
…………
請你幫助小明完成剩余的解答.
(2)問題遷移:請你依據(jù)小明的思路,解答下面的問題:
如圖3,AD∥BC,點P在射線OM上運動,∠MDP=∠α,∠BCP=∠β.
①當(dāng)點P在A、B兩點之間時,∠CPD,∠α,∠β之間有何數(shù)量關(guān)系?請說明理由.
②當(dāng)點P在A、B兩點外側(cè)時(點P與點O不重合),請直接寫出∠CPD,∠α,∠β之間的數(shù)量關(guān)系.
【答案】(1)110°;(2) 詳見解析
【解析】(1)根據(jù)平行線的判定與性質(zhì)補充即可;
(2)①過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;
②畫出圖形(分兩種情況(i)點P在BA的延長線上,(ii)點P在AB的延長線上),根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案.
(1)剩余過程:∴∠CPE+∠PCD=1800,
∴∠CPE=1800—1200=600,∴∠APC=500+600=1100.
(2)①∠CPD=∠α+∠β.理由如下:
過P作PQ∥AD .
∵AD∥BC,∴PQ∥BC ,∴,
同理,,
∴;
②(i)當(dāng)P在BA延長線時,如圖4,過P作PE∥AD交CD于E,同①可知:∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠β﹣∠α;
(ii)當(dāng)P在AB延長線時,如圖5, 同①可知:∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠α﹣∠β.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,D是BC邊上一點,以DB為直徑的⊙O經(jīng)過AB的中點E,交AD的延長線于點F,連接EF.
(1)求證:∠1=∠F;
(2)若sinB=,EF=2,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=3,BC=2,以點A為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)矩形ABCD,旋轉(zhuǎn)角為α(0°<α<180°),得到矩形AEFG,點B、點C、點D的對應(yīng)點分別為點E、點F、點G.
(1)如圖①,當(dāng)點E落在DC邊上時,直寫出線段EC的長度為 ;
(2)如圖②,當(dāng)點E落在線段CF上時,AE與DC相交于點H,連接AC,
①求證:△ACD≌△CAE;
②直接寫出線段DH的長度為 .
(3)如圖③設(shè)點P為邊FG的中點,連接PB,PE,在矩形ABCD旋轉(zhuǎn)過程中,△BEP的面積是否存在最大值?若存在請直接寫出這個最大值;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發(fā).設(shè)慢車行駛的時間為,兩車之間的距離為,圖中的折線表示與之間的關(guān)系.根據(jù)圖象解答下列問題:
(1)甲、乙兩地之間的距離為多少;
(2)請解釋圖中點的實際意義;
(3)求慢車和快車的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)興趣小組活動中,小明進(jìn)行數(shù)學(xué)探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖1位置放置,AD與AE在同一直線上,AB與AG在同一直線上.連接DG,BE,易得DG=BE且DG⊥BE(不需要說明理由)
(1)如圖2,小明將正方形ABCD繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為(30﹤﹤180)
①連接DG,BE,求證:DG=BE且DG⊥BE;
②在旋轉(zhuǎn)過程中,如圖3,連接BG,GE,ED,DB,求出四邊形BGED面積的最大值.
(2)如圖4,分別取BG,GE,ED,DB的中點M,N,P,Q,連接MN,NP,PQ,QM,則四邊形MNPQ的形狀為 ,四邊形MNPQ面積的最大值是 ,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以矩形ABCD的相鄰邊建立直角坐標(biāo)系,AB=3,BC=5.點E是邊CD上一點,將△ADE沿著AE翻折,點D恰好落在BC邊上,記為F.
(1)求折痕AE所在直線的函數(shù)解析式______;
(2)若把翻折后的矩形沿y軸正半軸向上平移m個單位,連結(jié)OF,若△OAF是等腰三角形,則m的值是______,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=-mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A、B分別在x軸、y軸上,點A與點C關(guān)于y軸對稱,點E是線段AC上的點(點E不與點A、C重合)
(1)若點A的坐標(biāo)為(a,0),則點C的坐標(biāo)為 ;
(2)如圖1,點F是線段AB上的點,若∠BEF=∠BAO,∠BAO=2∠OBE,求證:AF=CE;
(3)如圖2,若點D為AC上一點,連接ED,滿足BE=BD,試探究∠ABE與∠DEC的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛汽車分別從A、B兩城同時沿高速公路駛向C城.已知A、C兩城的路程為500千米,B、C兩城的路程為450千米,甲車比乙車的速度快10千米/時,結(jié)果兩輛車同時到達(dá)C城,求兩車的速度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com