【題目】如圖,AB是⊙O的直徑,AC切⊙O于點A,AC=AB,CO的延長線交⊙O于點F,BP的延長線交AC于點E,連接AP、AF.
(1)求證:AF∥BE;
(2)求證:;
(3)若AB=2,求tan∠F的值.
【答案】(1)證明見解析‘;(2)證明見解析;(3)tan∠F=.
【解析】
(1)根據(jù)三角形中等邊對等角得到∠OAF=∠F,由同弧所對的圓周角相等得到∠B=∠F,從而得出∠OAF=∠B,由此可得FA∥BE.
(2)根據(jù)弦切角定理得∠PAC=∠F,從而證出△APC∽△FAC,利用對應(yīng)邊成比例及AB=AC,證出,再根據(jù)比例的性質(zhì)整理可得,AB=AC.得證.
(3)根據(jù)切割線定理,結(jié)合題中數(shù)據(jù)可得CP(CP+PF)=AC2=4,由此解出CP=(舍負).再由FP為⊙O的直徑得∠FAP=90°,在Rt△FAP中利用三角函數(shù)的定義,結(jié)合(2)中的結(jié)論即可算出tan∠PFA的值.
(1)證明:∵在⊙O中,直徑AB與FP交于點O,
∴OA=OF,
∴∠OAF=∠F.
又∵∠B=∠F,
∴∠OAF=∠B.
∴FA∥BE.
(2)證明:∵AC為⊙O的切線,PA是弦,
∴∠PAC=∠F.
∵∠C=∠C,
∴△APC∽△FAC.
∴.
∴.
∵AB=AC,
∴;
(3)解:∵AC切⊙O于點A,CPF為⊙O的割線,
∴AC2=CP×CF=CP(CP+PF),
∵PF=AB=AC=2,
∴CP(CP+2)=4,
整理得CP2+2CP-4=0,解之得CP=,
∵CP>0,
∴CP=.
∵FP為⊙O的直徑,
∴∠FAP=90°,
∴在Rt△FAP中,tan∠F==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,扇形AOB中,∠AOB=120°,OA=2,若以A為圓心,OA長為半徑畫弧交弧AB于點C,過點C作CD⊥OA,垂足為D,則圖中陰影部分的面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,AC與BD相交于點E,點F在線段BC上,,.
(1)求證:AB∥EF;
(2)求S△ABE:S△EBC:S△ECD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AD∥BC,AB=DC,E是對角線AC上一點,且AC·CE=AD·BC.
(1)求證:∠DCA=∠EBC;
(2)延長BE交AD于F,求證:AB2=AF·AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若干個全等的正五邊形排成環(huán)狀,圖中所示的是前3個正五邊形,要完成這一圓環(huán)還需正五邊形的個數(shù)為( )
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解一元二次方程x2+4x﹣9=0時,原方程可變形為( )
A. (x+2)2=1 B. (x+2)2=7 C. (x+2)2=13 D. (x+2)2=19
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使kx+b<成立的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D.過點D作EF⊥AC,垂足為E,且交AB的延長線于點F.
(1)求證:EF是⊙O的切線;
(2)已知AB=4,AE=3.求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小華在晚上由路燈A走向路燈B.當他走到點P時,發(fā)現(xiàn)他身后影子的頂部剛好接觸到路燈A的底部;當他向前再步行12m到達點Q時,發(fā)現(xiàn)他身前影子的頂部剛好接觸到路燈B的底部.已知小華的身高是1.6m,兩個路燈的高度都是9.6m,且AP=QB.
(1)求兩個路燈之間的距離;
(2)當小華走到路燈B的底部時,他在路燈A下的影長是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com