【題目】如圖,在△BCE中,點A時邊BE上一點,以AB為直徑的⊙O與CE相切于點D,AD∥OC,點F為OC與⊙O的交點,連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)欲證明CB是⊙O的切線,只要證明BC⊥OB,可以證明△CDO≌△CBO解決問題.
(2)首先證明S陰=S扇形ODF,然后利用扇形面積公式計算即可.
試題解析:(1)證明:連接OD,與AF相交于點G,∵CE與⊙O相切于點D,∴OD⊥CE,∴∠CDO=90°,∵AD∥OC,∴∠ADO=∠1,∠DAO=∠2,∵OA=OD,∴∠ADO=∠DAO,∴∠1=∠2,在△CDO和△CBO中,∵CO=CO,∠1=∠2,OD=OC,∴△CDO≌△CBO,∴∠CBO=∠CDO=90°,∴CB是⊙O的切線.
(2)由(1)可知∠3=∠BCO,∠1=∠2,∵∠ECB=60°,∴∠3=∠ECB=30°,∴∠1=∠2=60°,∴∠4=60°,∵OA=OD,∴△OAD是等邊三角形,∴AD=OD=OF,∵∠1=∠ADO,在△ADG和△FOG中,∵∠1=∠ADG,∠FGO=∠AGD,AD=OF,∴△ADG≌△FOG,∴S△ADG=S△FOG,∵AB=6,∴⊙O的半徑r=3,∴S陰=S扇形ODF==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】陽光公司銷售一種進(jìn)價為21元的電子產(chǎn)品,按標(biāo)價的九折銷售,仍可獲利20%,則這種電子產(chǎn)品的標(biāo)價為元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30°,內(nèi)有一點P且OP=,若M、N為邊OA、OB上兩動點,那么△PMN的周長最小為( )
A. B. 6 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AM∥CN,點B為平面內(nèi)一點,AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系;
(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x,y的多項式ax2﹣3xy﹣x﹣2x2+bxy+4中不含二次項,試求多項式2(a﹣b)﹣3(a+2b)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有下列命題:①若∠1=∠2,則∠D=∠3;②若∠C=∠D,則∠3=∠C;③若∠A=∠F,則∠1=∠2;④若∠1=∠2,∠C=∠D,則∠F=∠A,其中正確的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF∥AD,AD∥BC,∠DAC=120°.
(1)若AB平分∠DAC,求∠ABC的度數(shù).
(2)若∠ACF=20°,求∠BCF的度數(shù).
(3)在(2)的條件下,若CE平分∠BCF,求∠CEF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com