【題目】計(jì)算
(1) (﹣24)﹣(﹣36) +(+20)
(2)
(3)
(4)
【答案】(1)32;(2)24;(3)-18 ;(4).
【解析】
(1)直接利用有理數(shù)加減運(yùn)算法則計(jì)算得出答案;
(2)直接利用有理數(shù)乘除運(yùn)算法則計(jì)算得出答案;
(3)直接利用乘法分配律計(jì)算得出答案;
(4)把 變形為(100- ),再利用乘法分配律計(jì)算得出答案.
解:(1) (﹣24)﹣(﹣36) +(+20)
=-24+36+20
=32;
(2)
=4×3×2
=24;
(3)
= (-24)×-(-24)× -(-24)×
= -44+8+18
= -18 ;
(4)
=(100- )×(-3)
=100×(-3)-×(-3)
=-300+
=.
故答案為:(1)32;(2)24;(3)-18 ;(4).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由邊長為1的小正方形組成的網(wǎng)格,小格的頂點(diǎn)叫格點(diǎn),在正方形網(wǎng)格的三條不同的實(shí)線上各取一個(gè)格點(diǎn),使其中任意兩點(diǎn)不在同一實(shí)線上,得到格點(diǎn)△ABC.
(1)AC= :△ABC是 三角形;
(2)請?jiān)谙旅娴恼叫尉W(wǎng)格中各畫出一個(gè)格點(diǎn)直角三角形,使其中任意兩點(diǎn)不在同一實(shí)線上,并且三個(gè)網(wǎng)格中的三角形互不全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=4,對角線AC與BD交于點(diǎn)O,OE⊥AC交BC于點(diǎn)E,CE=3,則矩形ABCD的面積為( )
A.B.C.12D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,,是角平分線,是高,和交于點(diǎn).
(1)若,則____________,____________;
(2)結(jié)合(1)中的結(jié)果,探究和的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.為了解某小區(qū)居民使用共享單車的情況,某研究小組隨機(jī)采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)分別為:17,12,15,20,17,0,7,26,17,9.
(1)這組數(shù)據(jù)的中位數(shù)是 ,眾數(shù)是 ;
(2)計(jì)算這10位居民一周內(nèi)使用共享單車的平均次數(shù);
(3)若該小區(qū)有200名居民,試估計(jì)該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)F是BC延長線上一點(diǎn),以CF為邊作菱形CDEF,使菱形CDEF與點(diǎn)A在BC的同側(cè),連接BE,點(diǎn)G是BE的中點(diǎn),連接AG、DG.
(1)如圖①,當(dāng)∠BAC=∠DCF=90°時(shí),AG與DG的位置關(guān)系為________,數(shù)量關(guān)系為________;
(2)如圖②,當(dāng)∠BAC=∠DCF=60°時(shí),AG與DG的位置關(guān)系為________,數(shù)量關(guān)系為________,請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0,②3a+c<0,③a﹣b+c>0,④4a+2b+c>0,⑤若點(diǎn)(﹣2,y1)和(﹣,y2)在該圖象上,則y1>y2,其中正確的結(jié)論是 .(填入正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,E、F、G、H分別是AB、BD、CD、AC的中點(diǎn).
(1)求證:四邊形EFGH是平行四邊形;
(2)當(dāng)AD⊥BC時(shí),四邊形EFGH是哪種特殊的平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC和△A'B'C'的頂點(diǎn)都在格點(diǎn)上.
(1)將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后得到△A1BC1;
(2)若△A'B'C'是由△ABC繞某一點(diǎn)旋轉(zhuǎn)某一角度得到,則旋轉(zhuǎn)中心的坐標(biāo)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com