【題目】如圖,已知點D在反比例函數(shù)y= 的圖象上,過點D作x軸的平行線交y軸于點B(0,3).過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=

(1)求反比例函數(shù)y= 和直線y=kx+b的解析式;
(2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說明理由;
(3)點E為x軸上點A右側(cè)的一點,且AE=OC,連接BE交直線CA與點M,求∠BMC的度數(shù).

【答案】
(1)

解:∵A(5,0),

∴OA=5.

,

,解得OC=2,

∴C(0,﹣2),

∴BD=OC=2,

∵B(0,3),BD∥x軸,

∴D(﹣2,3),

∴m=﹣2×3=﹣6,

,

設(shè)直線AC關(guān)系式為y=kx+b,

∵過A(5,0),C(0,﹣2),

,解得


(2)

解:∵B(0,3),C(0,﹣2),

∴BC=5=OA,

在△OAC和△BCD中

∴△OAC≌△BCD(SAS),

∴AC=CD,

∴∠OAC=∠BCD,

∴∠BCD+∠BCA=∠OAC+∠BCA=90°,

∴AC⊥CD


(3)

解:∠BMC=45°.

如圖,連接AD,

∵AE=OC,BD=OC,AE=BD,

∴BD∥x軸,

∴四邊形AEBD為平行四邊形,

∴AD∥BM,

∴∠BMC=∠DAC,

∵△OAC≌△BCD,

∴AC=CD,

∵AC⊥CD,

∴△ACD為等腰直角三角形,

∴∠BMC=∠DAC=45°


【解析】(1)由A點坐標可求得OA的長,再利用三角函數(shù)的定義可求得OC的長,可求得C、D點坐標,再利用待定系數(shù)法可求得直線AC的解析式;(2)由條件可證明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可證得AC⊥CD;(3)連接AD,可證得四邊形AEBD為平行四邊形,可得出△ACD為等腰直角三角形,則可求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,如果直線l上依次有3個點ABC,那么

(1)在直線l上共有多少射線?多少條線段?

(2)在直線l上增加一個點,共增加了多少條射線?多少條線段?

(3)如果在直線l上增加到n個點,則共有多少條射線?多少條線段?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12)(2017·黃岡)已知:如圖,一次函數(shù)y=-2x1與反比例函數(shù)y的圖象有兩個交點A(1m)B過點AAEx,垂足為E;過點BBDy,垂足為點D,且點D的坐標為(0,-2),連結(jié)DE.

(1)k的值;

(2)求四邊形AEDB的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用數(shù)軸回答:

(1)所有小于4且大于-3的整數(shù)是____________________________________________;

(2)不小于-4的非正整數(shù)有_________________________________________________;

(3)絕對值小于5的整數(shù)有_________________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)填在相應(yīng)的橫線內(nèi).

-2.4,3,2.018,1,-0.15,0,-(-2.28),-,-|-4|.

正數(shù):________________________;

負有理數(shù):______________________

整數(shù):__________________________;

負分數(shù):________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設(shè)運動時間為t秒.
(1)填空:點A坐標為;拋物線的解析式為
(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當(dāng)一個點到達終點時,另一個點隨之停止運動.當(dāng)t為何值時,△PCQ為直角三角形?
(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當(dāng)t為何值時,△ACQ的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市水果批發(fā)部門欲將A市的一批水果運往本市銷售,有火車和汽車兩種運輸方式,運輸過程中的損耗均為200/時,其他主要參考數(shù)據(jù)如下:

運輸工具

途中平均速度

(千米/)

運費

(/千米)

裝卸費用

()

火車

100

15

2000

汽車

80

20

900

(1)如果選擇汽車的總費用比選擇火車的總費用多1100元,那么你知道本市與A市之間的路程是多少千米嗎?請你列方程解答;

(2)A市與某市之間的路程為s千米,且知道火車與汽車在路上耽誤的時間分別為2小時和3.1小時,要想將這批水果運往該市進行銷售,則當(dāng)s為多少時,選擇火車和汽車運輸所需費用相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知線段ABCD的公共部分BD=AB= CD,線段AB、CD的中點E,F之間距離是10cmAB,CD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(﹣1,0)、B(3,0)、C(0,﹣3)三點,直線l是拋物線的對稱軸.

(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點P是直線l上的一個動點,當(dāng)點P到點A、點B的距離之和最短時,求點P的坐標;
(3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標.

查看答案和解析>>

同步練習(xí)冊答案