【題目】如圖,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.點(diǎn)D在AC上,AD=1cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB勻速運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),沿C→B→A→C的路徑勻速運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),在B點(diǎn)處首次相遇后,點(diǎn)P的運(yùn)動(dòng)速度每秒提高了2cm,并沿B→C→A的路徑勻速運(yùn)動(dòng);點(diǎn)Q保持速度不變,并繼續(xù)沿原路徑勻速運(yùn)動(dòng),兩點(diǎn)在D點(diǎn)處再次相遇后停止運(yùn)動(dòng),設(shè)點(diǎn)P原來(lái)的速度為xcm/s.
(1)點(diǎn)Q的速度為cm/s(用含x的代數(shù)式表示).
(2)求點(diǎn)P原來(lái)的速度.
【答案】
(1) x
(2)解:AC= = =5,
CD=5﹣1=4,
在B點(diǎn)處首次相遇后,點(diǎn)P的運(yùn)動(dòng)速度為(x+2)cm/s,
由題意得 = ,
解得:x= (cm/s),
答:點(diǎn)P原來(lái)的速度為 cm/s.
【解析】(1)設(shè)點(diǎn)Q的速度為ycm/s,
由題意得3÷x=4÷y,
∴y= x,
所以答案是: x;
【考點(diǎn)精析】本題主要考查了分式方程的應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫(xiě)出答案(要有單位)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD的面積為300cm2,長(zhǎng)和寬的比為3:2.在此長(zhǎng)方形內(nèi)沿著邊的方向能否并排裁出兩個(gè)面積均為147cm2的圓(π取3),請(qǐng)通過(guò)計(jì)算說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O交AB于點(diǎn)D,E為BC的中點(diǎn),連接DE并延長(zhǎng)交AC的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:DE是⊙O的切線(xiàn);
(2)若CF=2,DF=4,求⊙O直徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直線(xiàn)AB和CD與直線(xiàn)MN相交.
(1)如圖①,EG平分∠BEF,FH平分∠DFE(平分的是一對(duì)同旁?xún)?nèi)角),則∠1與∠2滿(mǎn)足________時(shí),AB∥CD;
(2)如圖②,EG平分∠MEB,FH平分∠DFE(平分的是一對(duì)同位角),則∠1與∠2滿(mǎn)足________時(shí),AB∥CD;
(3)如圖③,EG平分∠AEF,FH平分∠DFE(平分的是一對(duì)內(nèi)錯(cuò)角),則∠1與∠2滿(mǎn)足什么條件時(shí),AB∥CD?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1 , △A1B1C1向右平移6個(gè)單位,再向上平移2個(gè)單位得到△A2B2C2 .
(1)畫(huà)出△A1B1Cl和△A2B2C2;
(2)P(a,b)是△ABC的AC邊上一點(diǎn),△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)P的對(duì)應(yīng)點(diǎn)分別為P1、P2 , 請(qǐng)寫(xiě)出點(diǎn)P1、P2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以坐標(biāo)原點(diǎn)O為圓心,作半徑為2的圓,若直線(xiàn)y=﹣x+b與⊙O相交,則b的取值范圍是( )
A.0≤b<2
B.﹣2
C.﹣2 2
D.﹣2 <b<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(﹣1,0),半徑為1,點(diǎn)P為直線(xiàn)y=﹣ x+3上的動(dòng)點(diǎn),過(guò)點(diǎn)P作⊙A的切線(xiàn),切點(diǎn)為Q,則切線(xiàn)長(zhǎng)PQ的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【問(wèn)題學(xué)習(xí)】小蕓在小組學(xué)習(xí)時(shí)問(wèn)小娟這樣一個(gè)問(wèn)題:已知α為銳角,且sinα= ,求sin2α的值.小娟是這樣給小蕓講解的:
構(gòu)造如圖1所示的圖形,在⊙O中,AB是直徑,點(diǎn)C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.設(shè)∠BAC=α,則sinα= ,可設(shè)BC=x,則AB=3x,….
(1)【問(wèn)題解決】
請(qǐng)按照小娟的思路,利用圖1求出sin2α的值;(寫(xiě)出完整的解答過(guò)程)
(2)如圖2,已知點(diǎn)M,N,P為⊙O上的三點(diǎn),且∠P=β,sinβ= ,求sin2β的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AD=2 ,把邊BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°得到線(xiàn)段BP,連接AP并延長(zhǎng)交CD于點(diǎn)E,連接PC,則三角形PCE的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com