【題目】如圖所示,在中,,,在以AB的中點O為坐標(biāo)原點,AB所在直線為x軸建立的平面直角坐標(biāo)系中,將繞點B時針旋轉(zhuǎn),使點A旋轉(zhuǎn)至y軸的正半軸上的A則圖中陰影部分的面積為______

【答案】

【解析】

根據(jù)等腰直角三角形的性質(zhì)求出AB,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得A′B=AB,然后求出∠OA′B=30°,再根據(jù)直角三角形兩銳角互余求出∠A′BA=60°,即旋轉(zhuǎn)角為60°,再根據(jù)S陰影=S扇形ABA′+SA′BC′-SABC-S扇形CBC′=S扇形ABA′-S扇形CBC′,然后利用扇形的面積公式列式計算即可得解.

∵∠ACB=90°,AC=BC=1,

∴△ABC是等腰直角三角形,

AB=,

∵△ABC繞點B順時針旋轉(zhuǎn)點AA′處,

BA=AB,

BA=2OB,

∴∠OAB=30°

∴∠ABA=60°,

即旋轉(zhuǎn)角為60°,

S陰影=S扇形ABA′+SABC-SABC-S扇形CBC′

=S扇形ABA′-S扇形CBC′,

=

=,

=,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB=6cm,BC=12cm,點P從點A開始以1cm/s的速度沿AB邊向點B運動,點Q從點B2cm/s的速度沿BC邊向點C運動,如果P、Q同時出發(fā),設(shè)運動時間為ts
1)當(dāng)t=2時,求△PBQ的面積;
2)當(dāng)t=時,試說明△DPQ是直角三角形;
3)當(dāng)運動3s時,P點停止運動,Q點以原速立即向B點返回,在返回的過程中,DP是否能平分∠ADQ?若能,求出點Q運動的時間;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題

122

3 (代入法) (4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(0,a),B(b,0),C(c,0)是平面直角坐標(biāo)系中三點,且a,b滿足.c<3

(1)A,B兩點的坐標(biāo);

(2)若△ABC的面積為6.

在圖中畫出△ABC;

△ABP△ABC全等,直接寫出所有符合條件的P點的坐標(biāo);

(3)已知∠MAB = ∠ABC,BM = AC,若滿足條件的M點有且只有兩個,直接寫出此時c的取

值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列不等式(組)

把下列各式分解因式:

化簡分式

;

⑥(-x-y2

解方程:

;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=ADC=90°,連接AC、BDM、N分別是ACBD的中點,連接MN

(1)求證:MNBD.

(2)若∠DAC=62°,∠BAC=58°,求∠DMB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】第十一屆中國鄭州國際園林博覽會于2017929日在鄭州航空港經(jīng)濟綜合實驗區(qū)開幕,共有園博園、雙湖中央公園、苑陵故城遺址公園三個園區(qū),三園作為我市新的熱門旅游勝地,吸引了眾多游客的目光,鄭州市某中學(xué)一班、二班的老師計劃組織本班學(xué)生于20171118日前往參觀游覽,按照園區(qū)規(guī)定教師需購買普通票,學(xué)生購買學(xué)生票,兩個班前往參觀的教師人數(shù)、學(xué)生人數(shù)、計劃購票總花費分別見如表:

班級

教師人數(shù)

學(xué)生人數(shù)

總的購票費用

一班

4

40

1840

二班

5

45

2100

每張普通票、學(xué)生票的票價分別為多少元?

為了節(jié)約費用,85名學(xué)生準(zhǔn)備通過旅行社購買團體票,每張30元,9名教師準(zhǔn)備參加20171116日由鄭州市總工會推出了“10元暢游園博園的活動,本次活動將為鄭州市工會會員送上2000張園博園的門票,并于111616:00、20:00兩個整點在微信平臺進(jìn)行電子搶票每人1,搶到電子票的工會會員就可以花費10元購買園博園門票,已知這兩個班的9名教師都具有搶票資格若最終這9名教師、85名學(xué)生購買門票的總花費不能超過2900元,則至少需要幾名教師搶到“10元票”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司共有三個部門,根據(jù)每個部門的員工人數(shù)和相應(yīng)每人所創(chuàng)的年利潤繪制成如下的統(tǒng)計表和扇形圖.

各部門人數(shù)及每人所創(chuàng)年利潤統(tǒng)計表

部門

員工人數(shù)

每人所創(chuàng)的年利潤/萬元

A

5

10

B

8

C

5

(1)在扇形圖中,C部門所對應(yīng)的圓心角的度數(shù)為___________;

在統(tǒng)計表中,___________,___________;

(2)求這個公司平均每人所創(chuàng)年利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,C = 90°,.DBC上一點,且到A,B兩點的距離相等.

(1)用直尺和圓規(guī),作出點D的位置(不寫作法,保留作圖痕跡);

(2)連結(jié)AD,若∠B = 35°,求∠CAD的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案