【題目】如圖,AD∥BC,若∠ADP=∠α,∠BCP=∠β,射線OM上有一動(dòng)點(diǎn)P.
(1)當(dāng)點(diǎn)P在A,B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠CPD與∠α、∠β之間有何數(shù)量關(guān)系?請說明理由
(2)如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請你直接寫出∠CPD與∠α、∠β之間的何數(shù)量關(guān)系.
【答案】(1)∠CPD=∠α+∠β,理由見解析;(2)①當(dāng)P在BA延長線時(shí),∠CPD=∠β﹣∠α;理由見解析;②當(dāng)P在BO之間時(shí),∠CPD=∠α﹣∠β.理由見解析.
【解析】
(1)過P作PE∥AD交CD于E,根據(jù)平行線判定和性質(zhì),得∠CPD=∠α+∠β.(2)過P作PE∥AD交CD于E,根據(jù)平行線判定和性質(zhì),得①當(dāng)P在BA延長線時(shí),∠CPD=∠β﹣∠α;②當(dāng)P在BO之間時(shí),∠CPD=∠α﹣∠β.
(1)∠CPD=∠α+∠β,理由如下:
如圖1,過P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β;
(2)分兩種情況:①當(dāng)P在BA延長線時(shí),∠CPD=∠β﹣∠α;
理由:如圖2,過P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;
②當(dāng)P在BO之間時(shí),∠CPD=∠α﹣∠β.
理由:如圖3,過P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】特例研究:如圖,等邊的邊長為8,求等邊的高.
經(jīng)驗(yàn)提升:
如圖,在中,,點(diǎn)P為射線BC上的任一點(diǎn),過點(diǎn)P作,,垂足分別為D、E,過點(diǎn)C作,垂足為補(bǔ)全圖形,判斷線段PD,PE,CF的數(shù)量關(guān)系,并說明理由.
綜合應(yīng)用:
如圖,在平面直角坐標(biāo)系中有兩條直線:,:,若線段BC上有一點(diǎn)M到的距離是1,請運(yùn)用中的結(jié)論求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線 經(jīng)過直角三角形OAB斜邊OA的中點(diǎn)D,且與直角邊AB相交于點(diǎn)C.若點(diǎn)A的坐標(biāo)為(﹣6,4),則△AOC的面積為v .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小晗家客廳里裝有一種三位單極開關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個(gè)開關(guān)均可打開對(duì)應(yīng)的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進(jìn)新房不久,不熟悉情況.
(1)若小晗任意按下一個(gè)開關(guān),正好樓梯燈亮的概率是多少?
(2)若任意按下一個(gè)開關(guān)后,再按下另兩個(gè)開關(guān)中的一個(gè),則正好客廳燈和走廊燈同時(shí)亮的概率是多少?請用樹狀圖法或列表法加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰三角形ABC中,AB=AC,點(diǎn)D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點(diǎn)F.
(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說明理由;
(2)求證:過點(diǎn)A、F的直線垂直平分線段BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD=110°,將四邊形BCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到平行四邊形AB′C′D′的位置,旋轉(zhuǎn)角α(0°<α<70°),若C′D′恰好經(jīng)過點(diǎn)D,則α的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每個(gè)小方格是邊長為1個(gè)單位長度的小正方形,菱形OABC在平面直角坐標(biāo)系的位置如圖所示.
(1)以O(shè)為位似中心,在第一象限內(nèi)將菱形OABC放大為原來的2倍得到菱形OA1B1C1 , 請畫出菱形OA1B1C1 , 并直接寫出點(diǎn)B1的坐標(biāo);
(2)將菱形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°菱形OA2B2C2 , 請畫出菱形OA2B2C2 , 并求出點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某體育用品商店,購買50根跳繩和80個(gè)毽子共用1120元,購買30根跳繩和50個(gè)毽子共用680元.
(1)跳繩、毽子的單價(jià)各是多少元?
(2)該店在“元旦”節(jié)期間開展促銷活動(dòng),所有商品按同樣的折數(shù)打折銷售.節(jié)日期間購買100根跳繩和100個(gè)毽子只需1700元,該店的商品按原價(jià)的幾折銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,在面積為3的正方形ABCD中,E,F(xiàn)分別是BC和CD邊上的兩點(diǎn),AE⊥BF于點(diǎn)G,且BE=1.
(1)求證:△ABE≌△BCF;
(2)求出△ABE和△BCF重疊部分(即△BEG)的面積;
(3)現(xiàn)將△ABE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到△AB′E′(如圖2),使點(diǎn)E落在CD邊上的點(diǎn)E′處,問△ABE在旋轉(zhuǎn)前后與△BCF重疊部分的面積是否發(fā)生了變化?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com