如圖,已知平面直角坐標系中三個點A(-8,0)、B(2,0)、C(
163
,0)
精英家教網(wǎng)O為坐標原點.以AB為直徑的⊙M與y軸的負半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.
分析:(1)已知A、B的坐標就可以求出直徑AB的長,弦心距MB的長,根據(jù)垂徑定理就可以求出BD的長,即得到D的坐標.根據(jù)待定系數(shù)法就可以求出CD的解析式.
(2)連接MD,根據(jù)M,C,D的坐標就可以得△CDM的三邊的長,根據(jù)勾股定理的逆定理證明三角形是直角三角形.
(3)易證△CDM∽△CEA,根據(jù)相似三角形的對應邊的比相等,可以求出AE,再證明Rt△CDM∽Rt△BFA,就可以得到AF,則所求的一元二次方程就可以得到.
解答:(1)解:∵A(-8,0),B(2,0),
∴⊙M的圓心為(-3,0),且⊙M的半徑為5.
連接MD.
在Rt△OMD中,
OD=
MD2-OM2
=
52-32
=4,
∴D(0,-4).  (2分)
設所求直線CD的解析式為y=kx+b,則由C(
16
3
,0)、D(0,-4)兩點,
16
3
k+b=0
b=-4
,
解得
k=
3
4
b=-4

故所求直線CD的解析式為y=
3
4
x-4. (4分)

(2)證明:在Rt△CDO中,CD2=OD2+OC2=42+(
16
3
2=
400
9

在△CDM中,MC=3+
16
3
=
25
3
,DM=5,
∴DM2+CD2=25+
400
9
=
625
9

MC2=(
25
3
)2=
625
9
,
∴MD2+CD2=MC2精英家教網(wǎng)
∴△CDM是直角三角形,且
∠MDC=90°,CD經(jīng)過半徑MD的外端點D,
∴直線CD是⊙M的切線.  (6分)

(3)解:由已知,AE⊥CD,由(2),MD⊥CD,
∴MD∥AE,
∴△CDM∽△CEA.
CM
CA
=
DM
AE
,即
25
3
8+
16
3
=
5
AE
,解得AE=8.(7分)
連接BF.則∠AFB=90°.
又∠MDC=90°,∠CMD=∠CAE,
∴Rt△CDM∽Rt△BFA.
CM
MD
=
BA
AF
,即
25
3
3
=
10
AF
,解得AF=6.
故所求的一個一元二次方程是x2-14x+48=0.(9分)
點評:本題主要考查了待定系數(shù)法求函數(shù)解析式,以及相似三角形的性質,相似三角形的對應邊的比相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(四川巴中卷)數(shù)學(解析版) 題型:解答題

如圖,在平面直角坐標系中,一次函數(shù)的圖象與y軸交于點A,

與x軸交于點B,與反比例函數(shù)的圖象分別交于點M,N,已知△AOB的面積為1,點M的縱坐

標為2,

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)直接寫出時x的取值范圍。

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆安徽滁州八年級下期末模擬數(shù)學試卷(滬科版)(解析版) 題型:解答題

已知:如圖1,平面直角坐標系中,四邊形OABC是矩形,點A,C的坐

標分別為(6,0),(0,2).點D是線段BC上的一個動點(點D與點B,C不重合),過點D作直線=-交折線O-A-B于點E.

(1)在點D運動的過程中,若△ODE的面積為S,求S與的函數(shù)關系式,并寫出自變量的取值范圍;

(2)如圖2,當點E在線段OA上時,矩形OABC關于直線DE對稱的圖形為矩形O′A′B′C′,C′B′分別交CB,OA于點D,M,O′A′分別交CB,OA于點N,E.求證:四邊形DMEN是菱形;

(3)問題(2)中的四邊形DMEN中,ME的長為____________.

    

 

查看答案和解析>>

同步練習冊答案