【題目】如圖所示,在梯形中,,,的平分線交于點(diǎn),連接.
求證:四邊形是菱形;
若,,試判斷的形狀,并說明理由.
【答案】(1)見解析;(2)見解析.
【解析】
根據(jù)已知條件易證,由全等三角形的性質(zhì)可得BE=DE,再由平行線的性質(zhì)可得,即可證得,根據(jù)四條邊相等的四邊形是菱形即可判定四邊形是菱形;(2)是直角三角形.如圖,過點(diǎn)作交于點(diǎn),即可得四邊形AEFD是平行四邊形,所以DF=AE,AD=EF=BE,再由CE=2BE得出DE=EF,再判定是等邊三角形,即可得,由此證得結(jié)論.
證明:如圖,∵平分,
∴,
∵,,
∴,
∴,
∵,
∴,
∴,
∴,
∴四邊形是菱形.
是直角三角形.
如圖,過點(diǎn)作交于點(diǎn),
∵,
∴四邊形是平行四邊形,
∴,,
∵,
∴,
∴,
又∵,,
∴,
∴是等邊三角形,
∴,
∴是直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.在拋物線y=ax2+bx+c中,系數(shù)a、b、c為絕對值不大于1的整數(shù),則該拋物線的“拋物線三角形”是等腰直角三角形的概率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,若直線交軸于點(diǎn)、交軸于點(diǎn),將繞點(diǎn)逆時針旋轉(zhuǎn)得到.過點(diǎn),,的拋物線.
求拋物線的表達(dá)式;
若與軸平行的直線以秒鐘一個單位長的速度從軸向左平移,交線段于點(diǎn)、交拋物線于點(diǎn),求線段的最大值;
如圖②,點(diǎn)為拋物線的頂點(diǎn),點(diǎn)是拋物線在第二象限的上一動點(diǎn)(不與點(diǎn)、重合),連接,以為邊作圖示一側(cè)的正方形.隨著點(diǎn)的運(yùn)動,正方形的大小、位置也隨之改變,當(dāng)頂點(diǎn)或恰好落在軸上時,直接寫出對應(yīng)的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為( 。
A. 3 B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠B=90°,E是AB上一點(diǎn),且AE=BC,∠1=∠2.
(1)證明:AB=AD+BC;
(2)判斷△CDE的形狀?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程的兩個實(shí)數(shù)根的平方和為,那么的值是( )
A. 5 B. -1 C. 5或-1 D. -5或1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的方格中,每個小正方形的邊長都為1,△ABC的頂點(diǎn)均在格點(diǎn)上.在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(﹣1,2).
(1)把△ABC向下平移8個單位后得到對應(yīng)的△A1B1C1,畫出△A1B1C1;
(2)畫出與△A1B1C1關(guān)于y軸對稱的△A2B2C2;
(3)若點(diǎn)P(a,b)是△ABC邊上任意一點(diǎn),P2是△A2B2C2邊上與P對應(yīng)的點(diǎn),寫出P2的坐標(biāo)為 ;
(4)試在y軸上找一點(diǎn)Q(在圖中標(biāo)出來),使得點(diǎn)Q到B2、C2兩點(diǎn)的距離之和最小,并求出QB2+QC2的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,CE⊥AD于點(diǎn)E,且CB=CE,點(diǎn)F為CD邊上的一點(diǎn),CB=CF,連接BF交CE于點(diǎn)G.
(1)若∠D=60°,CF=2,求CG的長度;
(2)求證:AB=ED+CG.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com