【題目】已知,如圖:在平面直角坐標系中,O為坐標原點,四邊形OABC矩形,點A、C的坐標分別為,點DOA的中點,點PBC邊上運動,當是等腰三角形時,點Р的坐標為_______________

【答案】,,,;

【解析】

題中沒指明△ODP的腰長與底分別是哪個邊,故應該分情況進行分析,從而求得點P的坐標.

1OD是等腰三角形的底邊時,此時P2.5,4);

2OD是等腰三角形的一條腰時:

①若點O是頂角頂點時,P點就是以點O為圓心,5為半徑的弧與CB的交點,在直角OPC中,CP===3,則P的坐標是(3,4);②若D是頂角頂點時,P點就是以點D為圓心,5為半徑的弧與CB的交點,過DDMBC于點M,在直角PDM,PM==3,當PM的左邊時,CP=5-3=2,則P的坐標是(2,4);PM的右側(cè)時,CP=5+3=8,P的坐標是(8,4);故P的坐標為: 2.5,4);(3,4); (2,4)(8,4).

故答案為: 2.5,4);(3,4)(2,4)(8,4)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,有一個內(nèi)角是直角的三角形是直角三角形,其中直角所在的兩條邊叫直角邊,直角所對的邊叫斜邊(如圖①所示).數(shù)學家還發(fā)現(xiàn):在一個直角三角形中,兩條直角邊長的平方和等于斜邊長的平方。即如果一個直角三角形的兩條直角邊長度分別是,斜邊長度是,那么

1直接填空:如圖①,若a3,b4,則c ;若,則直角三角形的面積是 ______

2)觀察圖②,其中兩個相同的直角三角形邊AE、EB在一條直線上,請利用幾何圖形的之間的面積關系,試說明。

3)如圖③所示,折疊長方形ABCD的一邊AD,使點D落在BC邊的點F處,已知AB8,BC10,利用上面的結(jié)論求EF的長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個四位數(shù),記千位上和百位上的數(shù)字之和為x,十位上和個位上的數(shù)字之和為y,如果xy,那么稱這個四位數(shù)為“和平數(shù)”.

例如:2635,x2+6,y3+5,因為xy,所以2635是“和平數(shù)”.

(1)請判斷:3562   (填“是”或“不是”)“和平數(shù)”.

(2)直接寫出:最小的“和平數(shù)”是   ,最大的“和平數(shù)”是   

(3)如果一個“和平數(shù)”的個位上的數(shù)字是千位上的數(shù)字的兩倍,且百位上的數(shù)字與十位上的數(shù)字之和是14,求滿足條件的所有“和平數(shù)”.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在△ABC中,AC=BC,點D在△ABC外部,且∠ACB+ADB=180°,連接AB、CD.

(1)如圖1,當∠ACB=90°時,則∠ADC=______°.

(2)如圖2,當∠ACB=60°時,求證:DC平分∠ADB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題提出)

1)如圖①,已知 AB CD,求證 :∠1+MEN+2=360°

(推廣應用)

2)如圖②,已知 AB CD,求∠1+2+3+4+5 +6的度數(shù)為___________

如圖③,已知 ABCD ,求∠1+2+3+4+5 +6++n的度數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種鉑金飾品在甲、乙兩種商店銷售,甲店標價每克468元,按標價出售,不優(yōu)惠,乙店標價每克525元,但若買的鉑金飾品重量超過3克,則超出部分可打八折出售.若購買的鉑金飾品重量為克,其中

1)分別列出到甲、乙商店購買該種鉑金飾品所需費用(用含x的代數(shù)式表示);

2)李阿姨要買一條重量10克的此種鉑金飾品,到哪個商店購買最合算;

3)要買一條重量多少克的此種鉑金飾品,才能到乙商店購買比到甲商店優(yōu)惠300元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠A60°,∠C40°,DE垂直平分BC,連接BD

1)尺規(guī)作圖:過點DAB的垂線,垂足為F.(保留作圖痕跡,不寫作法)

2)求證:點DBA,BC的距離相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有0、102030的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.

1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;

2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰中,,于點,點延長線一點,點是線段上一點,.

(1)已知,求的度數(shù);

(2)求證:是等邊三角形;

(3)求證:.

查看答案和解析>>

同步練習冊答案