【題目】小聰和小明沿同一條路同時從學(xué)校出發(fā)到寧波天一閣查閱資料,學(xué)校與天一閣的路程是4千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時,小明剛好到達(dá)天一閣,圖中折線O﹣A﹣B﹣C和線段OD分別表示兩人離學(xué)校的路程s(千米)與所經(jīng)過的時間t(分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖象回答下列問題:
(1)小聰在天一閣查閱資料的時間為 分鐘,小聰返回學(xué)校的速度為 千米/分鐘;
(2)請你求出小明離開學(xué)校的路程s(千米)與所經(jīng)過的時間t(分鐘)之間的函數(shù)關(guān)系;
(3)當(dāng)小聰與小明迎面相遇時,他們離學(xué)校的路程是多少千米?
【答案】(1)15分鐘,千米/分鐘.(2)s=t(0≤t≤45).(3)當(dāng)小聰與小明迎面相遇時,他們離學(xué)校的路程是3千米.
【解析】
試題分析:(1)直接根據(jù)圖象上所給的數(shù)據(jù)的實際意義可求解;
(2)由圖象可知,s是t的正比例函數(shù),設(shè)所求函數(shù)的解析式為s=kt(k≠0),把(45,4)代入解析式利用待定系數(shù)法即可求解;
(3)由圖象可知,小聰在30≤t≤45的時段內(nèi)s是t的一次函數(shù),設(shè)函數(shù)解析式為s=mt+n(m≠0)
把(30,4),(45,0)代入利用待定系數(shù)法先求得函數(shù)關(guān)系式,再根據(jù)求函數(shù)圖象的交點方法求得交點坐標(biāo)即可.
解:(1)∵30﹣15=15,4÷15=
∴小聰在天一閣查閱資料的時間和小聰返回學(xué)校的速度分別是15分鐘,千米/分鐘.
(2)由圖象可知,s是t的正比例函數(shù)
設(shè)所求函數(shù)的解析式為s=kt(k≠0)
代入(45,4),得
4=45k
解得k=
∴s與t的函數(shù)關(guān)系式s=t(0≤t≤45).
(3)由圖象可知,小聰在30≤t≤45的時段內(nèi)s是t的一次函數(shù),設(shè)函數(shù)解析式為s=mt+n(m≠0)
代入(30,4),(45,0),得
解得
∴s=﹣t+12(30≤t≤45)
令﹣t+12=t,解得t=
當(dāng)t=時,S=×=3.
答:當(dāng)小聰與小明迎面相遇時,他們離學(xué)校的路程是3千米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把多項式x2﹣6x+9分解因式,結(jié)果正確的是( )
A.(x﹣3)2
B.(x﹣9)2
C.(x+3)(x﹣3)
D.(x+9)(x﹣9)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解中考體育科目訓(xùn)練情況,某縣從全縣九年級學(xué)生中隨機抽取了部分學(xué)生進(jìn)行了一次中考體育科目測試(把測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽樣測試的學(xué)生人數(shù)是 ;
(2)圖1中∠α的度數(shù)是 ,并把圖2條形統(tǒng)計圖補充完整;
(3)該縣九年級有學(xué)生3500名,如果全部參加這次中考體育科目測試,請估計不及格的人數(shù)為 .
(4)測試?yán)蠋熛霃?/span>4位同學(xué)(分別記為E、F、G、H,其中E為小明)中隨機選擇兩位同學(xué)了解平時訓(xùn)練情況,請用列表或畫樹形圖的方法求出選中小明的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠MON=40°,OE平分∠MON,點A、B、C分別是射線OM、OE、ON上的動點(A、B、C不與點O 重合),連接AC交射線OE于點D.設(shè)∠OAC=x°.
(1)如圖1,若AB∥ON,則①∠ABO的度數(shù)是 ;
②當(dāng)∠BAD=∠ABD時,x= ;當(dāng)∠BAD=∠BDA時,x= .
(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ADB中有兩個相等的角?若存在,求出x的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O的半徑為R,點P到圓心O的距離為d,并且d ≥ R,則P點( )
A.在⊙O內(nèi)或圓周上
B.在⊙O外
C.在圓周上
D.在⊙O外或圓周上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCO的頂點A、C分別在y軸、x軸上,以AB為弦的⊙M與x軸相切,若點A的坐標(biāo)為(0,﹣4),則圓心M的坐標(biāo)為( )
A.(﹣2,2.5) B.(2,﹣1.5) C.(2.5,﹣2) D.(2,﹣2.5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D是BC的中點,點E,F(xiàn)分別在線段AD及其延長線上,且DE=DF.給出下列條件:
①BE⊥EC;②BF∥CE;③AB=AC;
從中選擇一個條件使四邊形BECF是菱形,你認(rèn)為這個條件是 (只填寫序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩條平行線被第三條直線所截,則( )
A. 一對內(nèi)錯角的平分線互相平行 B. 一對同旁內(nèi)角的平分線互相平行
C. 一對對頂角的平分線互相平行 D. 一對鄰補角的平分線互相平行
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com