【題目】在中,,,點(diǎn)在斜邊所在的直線上,,線段關(guān)于對(duì)稱的線段為,連接、,則的面積為_______.
【答案】4或8
【解析】
分類討論①當(dāng)點(diǎn)D在線段BC上,②當(dāng)點(diǎn)D在線段BC上時(shí),根據(jù)對(duì)稱的性質(zhì)結(jié)合等腰直角三角形的性質(zhì)分別求得AC、DF=EF=CF的長,從而可求得答案.
①當(dāng)點(diǎn)D在線段BC上時(shí),如圖:
∵線段AD和線段AE關(guān)于AC對(duì)稱,
∴AD=AE,∠DAC=∠EAC,
∴DF=EF,∠DFC=∠DFA=90,
∵,
∴,
∵AB=AC,∠BAC =90,
∴EF=DF= CF=,AB=AC=,
∴AF=AC-CF=,
DE=EF+DF=,
∴;
②當(dāng)點(diǎn)D在線段BC上時(shí),如圖:
∵線段AD和線段AE關(guān)于AC對(duì)稱,
∴AD=AE,∠DAF=∠EAF,
∴DF=EF,∠DFC=90,
∵,
∴,
∵AB=AC,∠BAC =90,
∴DF=EF=CF=,AB=AC=,
∴AF=AC+CF=,
DE=EF+DF=,
∴;
故答案為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.
(1)在圖1中說明CE=CF;
(2)若∠ABC=90°,G是EF的中點(diǎn)(如圖2),求∠BDG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對(duì)角線AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個(gè)數(shù)有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線AB的函數(shù)解析式為y=-2x+8,與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)P(m,n)為線段AB上的一個(gè)動(dòng)點(diǎn)(與A、B不重合),作PE⊥x軸于點(diǎn)E,PF⊥y軸于點(diǎn)F,連接EF,若△PEF的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并寫出m的取值范圍;
(3)以上(2)中的函數(shù)圖象是一條直線嗎?請(qǐng)嘗試作圖驗(yàn)證.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過點(diǎn),點(diǎn),交y軸于點(diǎn)C,給出下列結(jié)論::b::2:3;若,則;對(duì)于任意實(shí)數(shù)m,一定有;一元二次方程的兩根為和,其中正確的結(jié)論是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線:,交x軸于A,點(diǎn)A在點(diǎn)B左邊,交y軸于C,其頂點(diǎn)為D,P是上一個(gè)動(dòng)點(diǎn),過P沿y軸正方向作線段軸,使,當(dāng)P點(diǎn)在上運(yùn)動(dòng)時(shí),Q隨之運(yùn)動(dòng)形成的圖形記為.
若,求點(diǎn)P運(yùn)動(dòng)到D點(diǎn)時(shí)點(diǎn)Q的坐標(biāo),并直接寫出圖形的函數(shù)解析式;
過B作直線軸,若直線l和y軸及,所圍成的圖形面積為12,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,點(diǎn)是上的一點(diǎn),連接,作交于點(diǎn).
(1)如圖1,當(dāng)時(shí),求證:;
(2)如圖2,作于點(diǎn),當(dāng)時(shí),求證:;
(3)在(2)的條件下,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,在平面內(nèi),如果一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一定的角度后能與自身重合,那么就稱這個(gè)圖形是旋轉(zhuǎn)對(duì)稱圖形,轉(zhuǎn)的這個(gè)角稱為這個(gè)圖形的一個(gè)旋轉(zhuǎn)角.例如,正方形繞著它的對(duì)角線的交點(diǎn)旋轉(zhuǎn)后能與自身重合所以正方形是旋轉(zhuǎn)對(duì)稱圖形,它有一個(gè)旋轉(zhuǎn)角為.
判斷下列說法是否正確(在相應(yīng)橫線里填上“對(duì)”或“錯(cuò)”)
①正五邊形是旋轉(zhuǎn)對(duì)稱圖形,它有一個(gè)旋轉(zhuǎn)角為.________
②長方形是旋轉(zhuǎn)對(duì)稱圖形,它有一個(gè)旋轉(zhuǎn)角為.________
填空:下列圖形中時(shí)旋轉(zhuǎn)對(duì)稱圖形,且有一個(gè)旋轉(zhuǎn)角為的是________.(寫出所有正確結(jié)論的序號(hào))
①正三角形②正方形③正六邊形④正八邊形
寫出兩個(gè)多邊形,它們都是旋轉(zhuǎn)對(duì)稱圖形,都有一個(gè)旋轉(zhuǎn)角為,其中一個(gè)是軸對(duì)稱圖形,但不是中心對(duì)稱圖形;另一個(gè)既是軸對(duì)稱圖形,又是中心對(duì)稱圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:小明同學(xué)進(jìn)入初二以后,讀書越發(fā)認(rèn)真.
在學(xué)習(xí)“用因式分解法解方程”時(shí),課后習(xí)題中有這樣一個(gè)問題:
下列方程的解法對(duì)不對(duì)?為什么?
解:或.
解得或.
所以,.
同學(xué)們都認(rèn)為不對(duì),原因:有的說該題的因式分解是錯(cuò)誤的;有的說將答案代入方程,方程左右兩邊不成立,等等.
小明同學(xué)除了認(rèn)為該解法不正確,還給出了一種因式分解的做法,小明同學(xué)的做法如下:
取與的平均值,即將與相加再除以2.
那么原方程可化為.
左邊用平方差公式可化為.
再移項(xiàng),開平方可得
請(qǐng)你認(rèn)真閱讀小明同學(xué)的方法,并用這個(gè)方法推導(dǎo):
關(guān)于的方程的求根公式(此時(shí)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com