如圖,在△ABC和△EDC中,AC=DC,AB=DE;∠ACB=∠DCE=90°,AB與CE交于F,ED與AB,BC,分別交于M,H.求證:CF=CH.
考點:全等三角形的判定與性質(zhì)
專題:證明題
分析:要證明CF=CH,可先證明△AFC≌△DHC,由Rt△ACB≌Rt△DCE(HL),∠A=∠D,AC=DC,所以根據(jù)全等三角形的判定定理ASA可以證得△AFC≌△DHC.
解答:證明:∵∠ACB=∠DCE=90°,
∴在Rt△ACB與Rt△ECD中,
AC=CD
AB=DE
,
∴Rt△ACB≌Rt△DCE(HL),
∴∠A=∠D,AC=DC,
又∵∠1=90°-∠FCH,∠2=90°-∠FCH,
∴∠1=∠2,
∴在△AFC與△DHC中,
∠A=∠D
AC=DC
∠1=∠2
,
∴△AFC≌△DHC(ASA),
∴CF=CH(全等三角形的對應邊相等).
點評:本題考查了全等三角形的判定與性質(zhì).全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時,關(guān)鍵是選擇恰當?shù)呐卸l件.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

5x2y•(-3y)2+(-6xy)2•(-xy)=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:關(guān)于x的方x2-2(m-2)x+m2-3m+3=0有兩個不相等的實數(shù)根x1,x2
(1)求實數(shù)m的范圍;
(2)
x
2
1
+x
2
2
=22
,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某公司投資新建了一商場,共有商鋪30間.據(jù)預測,當每間的年租金定為10萬元時,可全部租出.每間的年租金每增加5 000元,少租出商鋪1間.(假設年租金的增加額均為5000元的整數(shù)倍)該公司要為租出的商鋪每間每年交各種費用2萬元,未租出的商鋪每間每年交各種費用1萬元.
(1)當每間商鋪的年租金定為12萬元時,能租出多少間?年收益多少萬元?
(2)當每間商鋪的年租金定為多少萬元時,該公司的年收益最大,最大值為多少?
(收益=租金-各種費用)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,每個小正方形的邊長均為1個單位,△ABC的頂點均在格點上.
(1)畫出△ABC關(guān)于原點O對稱的△A1B1C1,并寫出點C1的坐標;
(2)將原來的△ABC繞著點A順時針旋轉(zhuǎn)90°得到△AB2C2,試在圖上畫出△AB2C2的圖形,并寫出點C2的坐標;
(3)求點C到點C2經(jīng)過的路線的長.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將拋物線y=2(x-1)2+3繞著原點O旋轉(zhuǎn)180°,則旋轉(zhuǎn)后的拋物線解析式為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一元二次方程4x2=4x+3的二次項系數(shù)是
 
,常數(shù)項是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

二次函數(shù)y=x2-2x與坐標軸交點個數(shù)為(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,為了測量某建筑物AB的高度,在平地上C處測得建筑物頂端A的仰角為30°,沿CB方向前進(9
3
-9)m到達D處,在D處測得建筑物頂端A的仰角為45°,求該建筑物AB的高度.

查看答案和解析>>

同步練習冊答案