【題目】如圖,以的直角邊為直徑作交斜邊于點(diǎn),過圓心作,交于點(diǎn),連接.
(1)判斷與的位置關(guān)系并說明理由;
(2)求證:;
(3)若,,求的長.
【答案】(1)證明見解析;(2)證明見解析;(3)
【解析】(1)先判斷出DE=BE=CE,得出∠DBE=∠BDE,進(jìn)而判斷出∠ODE=90°,即可得出結(jié)論;
(2)先判斷出△BCD∽△ACB,得出BC2=CDAC,再判斷出DE=12BC,AC=2OE,即可得出結(jié)論;
(3)先求出BC,進(jìn)而求出BD,CD,再借助(2)的結(jié)論求出AC,即可得出結(jié)論.
(1)DE是⊙O的切線,理由:如圖,
連接OD,BD,
∵AB是⊙O的直徑,
∴∠ADB=∠BDC=90°,
∵OE∥AC,OA=OB,
∴BE=CE,
∴DE=BE=CE,
∴∠DBE=∠BDE,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODE=∠OBE=90°,
∵點(diǎn)D在⊙O上,
∴DE是⊙O的切線;
(2)∵∠BCD=∠ABC=90°,∠C=∠C,
∴△BCD∽△ACB,
∴,
∴BC2=CDAC,
由(1)知DE=BE=CE=BC,
∴4DE2=CDAC,
由(1)知,OE是△ABC是中位線,
∴AC=2OE,
∴4DE2=CD2OE,
∴2DE2=CDOE;
(3)∵DE=,
∴BC=5,
在Rt△BCD中,tanC=,
設(shè)CD=3x,BD=4x,根據(jù)勾股定理得,(3x)2+(4x)2=25,
∴x=﹣1(舍)或x=1,
∴BD=4,CD=3,
由(2)知,BC2=CDAC,
∴AC==,
∴AD=AC﹣CD=﹣3=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=4,BC=3.點(diǎn)E從點(diǎn)A出發(fā),以每秒4個(gè)單位長度的速度沿折線AC-CB運(yùn)動,到點(diǎn)B停止.當(dāng)點(diǎn)E不與△ABC的頂點(diǎn)重合時(shí),過點(diǎn)E作其所在直角邊的垂線交AB于點(diǎn)F,將△AEF繞點(diǎn)F沿逆時(shí)針方向旋轉(zhuǎn)得到△NMF,使點(diǎn)A的對應(yīng)點(diǎn)N落在射線FE上.設(shè)點(diǎn)E的運(yùn)動時(shí)間為t(秒).
(1)用含t的代數(shù)式表示線段CE的長.
(2)求點(diǎn)M落到邊BC上時(shí)t的值.
(3)當(dāng)點(diǎn)E在邊AC上運(yùn)動時(shí),設(shè)△NMF與△ABC重疊部分圖形為四邊形時(shí),四邊形的面積為S(平方單位),求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一動點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.則下列結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正確的是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ΔABC中,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)C的坐標(biāo)為(4,3),點(diǎn)B的坐標(biāo)為(3,1),如果要使ΔABD與ΔABC全等,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:AB∥CD,平面內(nèi)有一點(diǎn)E,連接AE、CE
(1)如圖1,求證:∠E=∠A+∠C;
(2)如圖2,CD上有一點(diǎn)F,連接AF、EF,若∠FAE=∠FEA,∠EFD=2∠C,求證:∠AFC=2∠AEC;
(3)如圖3,在(2)的條件下,平面內(nèi)有一點(diǎn)G,連接AG、CG,若∠GCE與∠GAE互為補(bǔ)角,5∠AFC=2∠G,求∠G的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,△ABC中,AB=AC,AB的垂直平分線交邊AB于D點(diǎn),交邊AC于E點(diǎn),若△ABC與△EBC的周長分別是40cm,24cm,則AB= cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計(jì)劃購進(jìn)A,B兩種型號的手機(jī),已知每部A型號手機(jī)的進(jìn)價(jià)比每部B型號手機(jī)進(jìn)價(jià)多500元,每部A型號手機(jī)的售價(jià)是2500元,每部B型號手機(jī)的售價(jià)是2100元.
(1)若商場用50000元共購進(jìn)A型號手機(jī)10部,B型號手機(jī)20部,求A、B兩種型號的手機(jī)每部進(jìn)價(jià)各是多少元?
(2)為了滿足市場需求,商場決定用不超過7.5萬元采購A、B兩種型號的手機(jī)共40部,且A型號手機(jī)的數(shù)量不少于B型號手機(jī)數(shù)量的2倍.
①該商場有哪幾種進(jìn)貨方式?
②該商場選擇哪種進(jìn)貨方式,獲得的利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三邊a,b,c,滿足a+b2+|c﹣6|+28=4+10b,則△ABC的外接圓半徑=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的推理過程,在括號內(nèi)填上推理的依據(jù),如圖:
∵∠1+∠2=180°,∠2+∠4=180°(已知)
∴∠1=∠4( )
∴c∥a( )
又∵∠2+∠3=180°(已知 )
∠3=∠6( )
∴∠2+∠6=180°( )
∴a∥b( )
∴c∥b( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com