斐波那契(約1170-1250)是意大利數(shù)學(xué)家,他研究了一列數(shù), 這列數(shù)非常奇妙,被稱為斐波那契數(shù)列(按照一定順序排列著的一 列數(shù)稱為數(shù)列).后來人們?cè)谘芯克倪^程中,發(fā)現(xiàn)了許多意想不到 的結(jié)果,在實(shí)際生活中,很多花朵(如梅花、飛燕草、萬壽菊等)的 瓣數(shù)恰是斐波那契數(shù)列中的數(shù),斐波那契數(shù)列還有很多有趣的性質(zhì), 在實(shí)際生活中也有廣泛的應(yīng)用. 斐波那契數(shù)列中的第n個(gè)數(shù)可以用$\frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^{n}-(\frac{1-\sqrt{5}}{2})^{n}]$ 表示(其中n≥1),這是用無理數(shù)表示有理數(shù)的一個(gè)范例. |
分析 把n=1、n=2分別代入式子化簡(jiǎn)求得答案即可.
解答 解:第1個(gè)數(shù),當(dāng)n=1時(shí),
$\frac{1}{\sqrt{5}}$($\frac{1+\sqrt{5}}{2}$-$\frac{1-\sqrt{5}}{2}$)=$\frac{1}{\sqrt{5}}$×$\sqrt{5}$=1;
第2個(gè)數(shù),當(dāng)n=2時(shí),
$\frac{1}{\sqrt{5}}$[($\frac{1+\sqrt{5}}{2}$)2-($\frac{1-\sqrt{5}}{2}$)2]
=$\frac{1}{\sqrt{5}}$($\frac{1+\sqrt{5}}{2}$+$\frac{1-\sqrt{5}}{2}$)($\frac{1+\sqrt{5}}{2}$-$\frac{1-\sqrt{5}}{2}$)
=$\frac{1}{\sqrt{5}}$×1×$\sqrt{5}$
=1.
點(diǎn)評(píng) 此題考查二次根式的混合運(yùn)算、化簡(jiǎn)求值以及應(yīng)用,理解題意,找出運(yùn)算的方法是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ∠C=120° | B. | AE=6cm | C. | AD=8cm | D. | ∠BED=140° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com